Simon King, T. A. Stephenson, S. Isard, P. Taylor, Alex Strachan
{"title":"Speech recognition via phonetically featured syllables","authors":"Simon King, T. A. Stephenson, S. Isard, P. Taylor, Alex Strachan","doi":"10.21437/ICSLP.1998-531","DOIUrl":null,"url":null,"abstract":"Speech can be naturally described by phonetic features, such as a set of acoustic phonetic features or a set of articulatory features. This thesis establi shes the effectiveness of using phonetic features in phoneme recognition by comparing a recogniser based on them to a recogniser using an established parametrisation as a baseline. The usefulness of phonetic features serves as the foundation for the subsequent modelling of syllables. Syllables are subject to fewer of the context-sensitivity effects that hamper phone-based speech recognition. I investigate the different questions involved in creating syllable models. After training a feature-based syllable recogniser, I compare the feature based syllables against a baseline. To conclude, the feature based syllable models are compared against the baseline phoneme models in word recognition. With the resultant feature-syllable models performing well in word recognition, the featuresyllables show their future potential for large vocabulary automatic speech recognition.","PeriodicalId":117113,"journal":{"name":"5th International Conference on Spoken Language Processing (ICSLP 1998)","volume":"52 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Spoken Language Processing (ICSLP 1998)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/ICSLP.1998-531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66
Abstract
Speech can be naturally described by phonetic features, such as a set of acoustic phonetic features or a set of articulatory features. This thesis establi shes the effectiveness of using phonetic features in phoneme recognition by comparing a recogniser based on them to a recogniser using an established parametrisation as a baseline. The usefulness of phonetic features serves as the foundation for the subsequent modelling of syllables. Syllables are subject to fewer of the context-sensitivity effects that hamper phone-based speech recognition. I investigate the different questions involved in creating syllable models. After training a feature-based syllable recogniser, I compare the feature based syllables against a baseline. To conclude, the feature based syllable models are compared against the baseline phoneme models in word recognition. With the resultant feature-syllable models performing well in word recognition, the featuresyllables show their future potential for large vocabulary automatic speech recognition.