{"title":"A Machine Learning Analysis of Citation Impact Among Selected Pacific Basin Journals","authors":"Stewart Jones, Nurul Alam","doi":"10.1111/acfi.12584","DOIUrl":null,"url":null,"abstract":"This study uses a machine learning approach to identify and predict factors which influence citation impacts across five Pacific Basin journals: Abacus, Accounting & Finance, Australian Journal of Management, Australian Accounting Review and the Pacific Accounting Review from 2008 to 2018. The machine learning results indicate that citation impact is mostly influenced by: length of a journal article; the field of research (particularly environmental accounting), sample size; whether the sample is local or international; choice of research method (e.g., archival vs survey/interview); academic rank of the first author; institutional status of the first author; and number of authors of the article. The results may be useful for predicting future trends in citation impact as well as providing strategies for authors and editors to improve citation impact.","PeriodicalId":134477,"journal":{"name":"ARN Wiley-Blackwell Publishers Journals","volume":"21 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARN Wiley-Blackwell Publishers Journals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/acfi.12584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This study uses a machine learning approach to identify and predict factors which influence citation impacts across five Pacific Basin journals: Abacus, Accounting & Finance, Australian Journal of Management, Australian Accounting Review and the Pacific Accounting Review from 2008 to 2018. The machine learning results indicate that citation impact is mostly influenced by: length of a journal article; the field of research (particularly environmental accounting), sample size; whether the sample is local or international; choice of research method (e.g., archival vs survey/interview); academic rank of the first author; institutional status of the first author; and number of authors of the article. The results may be useful for predicting future trends in citation impact as well as providing strategies for authors and editors to improve citation impact.