P. Sajda, R. Goldman, M. Philiastides, A. Gerson, T. Brown
{"title":"A System for Single-trial Analysis of Simultaneously Acquired EEG and fMRI","authors":"P. Sajda, R. Goldman, M. Philiastides, A. Gerson, T. Brown","doi":"10.1109/CNE.2007.369667","DOIUrl":null,"url":null,"abstract":"In this paper we describe a system for simultaneously acquiring EEG and fMRI and evaluate it in terms of discriminating, single-trial, task-related neural components in the EEG. Using an auditory oddball stimulus paradigm, we acquire EEG data both inside and outside a 1.5T MR scanner and compare both power spectra and single-trial discrimination performance for both conditions. We find that EEG activity acquired inside the MR scanner during echo planer image acquisition is of high enough quality to enable single-trial discrimination performance that is 95 % of that acquired outside the scanner. We conclude that EEG acquired simultaneously with fMRI is of high enough fidelity to permit single-trial analysis.","PeriodicalId":427054,"journal":{"name":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","volume":"99 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNE.2007.369667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
In this paper we describe a system for simultaneously acquiring EEG and fMRI and evaluate it in terms of discriminating, single-trial, task-related neural components in the EEG. Using an auditory oddball stimulus paradigm, we acquire EEG data both inside and outside a 1.5T MR scanner and compare both power spectra and single-trial discrimination performance for both conditions. We find that EEG activity acquired inside the MR scanner during echo planer image acquisition is of high enough quality to enable single-trial discrimination performance that is 95 % of that acquired outside the scanner. We conclude that EEG acquired simultaneously with fMRI is of high enough fidelity to permit single-trial analysis.