A Bayesian Estimation and Predictionof Gompertz Extension Distribution Using the MCMC Method

A. Chaudhary, Vijay Kumar
{"title":"A Bayesian Estimation and Predictionof Gompertz Extension Distribution Using the MCMC Method","authors":"A. Chaudhary, Vijay Kumar","doi":"10.3126/njst.v19i1.29795","DOIUrl":null,"url":null,"abstract":"In this paper, the Markov chain Monte Carlo (MCMC) method is used to estimate the parameters of the Gompertz extension distribution based on a complete sample. We have developed a procedure to obtain Bayes estimates of the parameters of the Gompertz extension distribution using Markov Chain Monte Carlo (MCMC) simulation method in OpenBUGS, established software for Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods. We have obtained the Bayes estimates of the parameters, hazard and reliability functions, and their probability intervals are also presented. We have applied the predictive check method to discuss the issue of model compatibility. A real data set is considered for illustration under uniform and gamma priors","PeriodicalId":129302,"journal":{"name":"Nepal Journal of Science and Technology","volume":"22 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nepal Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/njst.v19i1.29795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, the Markov chain Monte Carlo (MCMC) method is used to estimate the parameters of the Gompertz extension distribution based on a complete sample. We have developed a procedure to obtain Bayes estimates of the parameters of the Gompertz extension distribution using Markov Chain Monte Carlo (MCMC) simulation method in OpenBUGS, established software for Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods. We have obtained the Bayes estimates of the parameters, hazard and reliability functions, and their probability intervals are also presented. We have applied the predictive check method to discuss the issue of model compatibility. A real data set is considered for illustration under uniform and gamma priors
基于MCMC方法的Gompertz扩展分布的贝叶斯估计与预测
本文采用马尔可夫链蒙特卡罗(MCMC)方法估计了基于完整样本的Gompertz扩展分布的参数。我们在OpenBUGS中开发了一个程序,使用马尔可夫链蒙特卡罗(MCMC)模拟方法获得Gompertz扩展分布参数的贝叶斯估计,OpenBUGS是使用马尔可夫链蒙特卡罗(MCMC)方法进行贝叶斯分析的软件。我们得到了参数、危险函数和可靠性函数的贝叶斯估计,并给出了它们的概率区间。我们应用预测检验方法来讨论模型兼容性问题。在均匀先验和伽玛先验条件下,考虑一个真实的数据集来进行说明
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信