Weather Attribute-Aware Multi-Scale Image Generation with Residual Learning

W. Chu, Li-wei Huang
{"title":"Weather Attribute-Aware Multi-Scale Image Generation with Residual Learning","authors":"W. Chu, Li-wei Huang","doi":"10.1109/Indo-TaiwanICAN48429.2020.9181357","DOIUrl":null,"url":null,"abstract":"We present image generation networks to generate images conforming to specified weather attributes. Taking weather attributes as the conditions, the proposed networks generate scene images with the help of a guided reference image. To generate higher-resolution images, we construct a multi-scale generation framework consisting of a global generator and a local enhancer. Furthermore, we integrate the idea of residual learning into the proposed framework, and aim at generating fine-grained texture. The evaluation shows performance comparison both from quantitative and qualitative perspectives. A comprehensive study including the impact of different attributes and extension of the proposed models is also provided. This work is kind of hybrid approach among various image generation studies.","PeriodicalId":171125,"journal":{"name":"2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN)","volume":"33 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Indo-TaiwanICAN48429.2020.9181357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present image generation networks to generate images conforming to specified weather attributes. Taking weather attributes as the conditions, the proposed networks generate scene images with the help of a guided reference image. To generate higher-resolution images, we construct a multi-scale generation framework consisting of a global generator and a local enhancer. Furthermore, we integrate the idea of residual learning into the proposed framework, and aim at generating fine-grained texture. The evaluation shows performance comparison both from quantitative and qualitative perspectives. A comprehensive study including the impact of different attributes and extension of the proposed models is also provided. This work is kind of hybrid approach among various image generation studies.
基于残差学习的天气属性感知多尺度图像生成
我们提出了图像生成网络来生成符合特定天气属性的图像。该网络以天气属性为条件,借助引导参考图像生成场景图像。为了生成更高分辨率的图像,我们构建了一个由全局生成器和局部增强器组成的多尺度生成框架。此外,我们将残差学习的思想融入到所提出的框架中,旨在生成细粒度纹理。评价从定量和定性两个方面进行了绩效比较。本文还对不同属性的影响和模型的扩展进行了全面的研究。这项工作是各种图像生成研究的一种混合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信