ON NIL SKEW GENERALIZED POWER SERIES REFLEXIVE RINGS

E. Ali
{"title":"ON NIL SKEW GENERALIZED POWER SERIES REFLEXIVE RINGS","authors":"E. Ali","doi":"10.37418/amsj.12.1.17","DOIUrl":null,"url":null,"abstract":"Let $R$ be a ring and $(S, \\leq)$ a strictly ordered monoid. In this paper, we deal with a new approaches to reflexive property for rings by using nilpotent elements. In this direction we introduce the notions of $(S, \\omega)$-reflexive and $(S, \\omega)$-$nil$-reflexive. Examples are given that, $(S, \\omega)$-$nil$-reflexive is not $(S, \\omega)$-reflexive. Under some suitable conditions, we proved that, if $R$ is a right $APP$-ring, then $R$ is $(S, \\omega)$-reflexive and $R$ be a semiprime ring with the $ACC$ on left annihilator ideals, $(S, \\leq)$ an $a.n.u.p.$-monoid, then $R$ is $(S, \\omega)$-reflexive. Also, we proved that, $R$ is $(S, \\omega)$-$nil$-reflexive if and only if $R/I$ is $(S, \\overline{\\omega})$-$nil$-reflexive, $R$ is $(S, \\omega)$-$nil$-reflexive if and only if $T_{n}(R)$ is $(S, \\omega)$-$nil$-reflexive and we will show that, if $R$ is a right Noetherian ring, then $R$ is $(S, \\omega)$-$nil$-reflexive. Moreover, we investigate ring extensions which have roles in ring theory.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"10 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.12.1.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $R$ be a ring and $(S, \leq)$ a strictly ordered monoid. In this paper, we deal with a new approaches to reflexive property for rings by using nilpotent elements. In this direction we introduce the notions of $(S, \omega)$-reflexive and $(S, \omega)$-$nil$-reflexive. Examples are given that, $(S, \omega)$-$nil$-reflexive is not $(S, \omega)$-reflexive. Under some suitable conditions, we proved that, if $R$ is a right $APP$-ring, then $R$ is $(S, \omega)$-reflexive and $R$ be a semiprime ring with the $ACC$ on left annihilator ideals, $(S, \leq)$ an $a.n.u.p.$-monoid, then $R$ is $(S, \omega)$-reflexive. Also, we proved that, $R$ is $(S, \omega)$-$nil$-reflexive if and only if $R/I$ is $(S, \overline{\omega})$-$nil$-reflexive, $R$ is $(S, \omega)$-$nil$-reflexive if and only if $T_{n}(R)$ is $(S, \omega)$-$nil$-reflexive and we will show that, if $R$ is a right Noetherian ring, then $R$ is $(S, \omega)$-$nil$-reflexive. Moreover, we investigate ring extensions which have roles in ring theory.
关于零斜广义幂级数自反环
让 $R$ 做个戒指 $(S, \leq)$ 严格有序的单群本文讨论了利用幂零元求解环自反性的一种新方法。在这个方向上,我们引入 $(S, \omega)$-反身性和 $(S, \omega)$-$nil$-反射性的。给出的例子是, $(S, \omega)$-$nil$-reflexive不是 $(S, \omega)$-反射性的。在适当的条件下,证明了 $R$ 是一种权利 $APP$-那就响吧 $R$ 是 $(S, \omega)$-反身性和 $R$ 是一个半素数环 $ACC$ 在左湮灭子理想中, $(S, \leq)$ 一个 $a.n.u.p.$-那就单一性吧 $R$ 是 $(S, \omega)$-反射性的。我们也证明了, $R$ 是 $(S, \omega)$-$nil$-反身当且仅当 $R/I$ 是 $(S, \overline{\omega})$-$nil$-反射性的; $R$ 是 $(S, \omega)$-$nil$-反身当且仅当 $T_{n}(R)$ 是 $(S, \omega)$-$nil$-自反性,我们会证明,如果 $R$ 是一个右诺瑟环,那么 $R$ 是 $(S, \omega)$-$nil$-反射性的。此外,我们还研究了环扩展在环理论中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信