{"title":"Case Study on Thermal Cycling Analysis for Different Solder Joint Sizes Using Finite Element Analysis","authors":"Muhammad Izzuddin Badrol Hissam","doi":"10.58915/aset.v2i1.221","DOIUrl":null,"url":null,"abstract":"This research uses finite element analysis to investigate the impact of different solder joint sizes on the mechanical aspects. Specifically, a three-dimensional model of a leadless solder joint for surface mount components was created in simulation software. The study analyses lead-free solder joint thermo-mechanical properties, such as maximum stress and strain. The simulation results indicate that the solder joints parameters significantly influence the thermo-mechanical behaviour during temperature cycling tests. The highest stress is observed at the interface between the solder and pad on the large-size solder joint, while the lowest stress (118MPa) is recorded when employing a small-size solder joint. This research contributes to a better understanding the thermo-mechanical characteristics of different solder joint parameters under temperature cycling conditions. ","PeriodicalId":282600,"journal":{"name":"Advanced and Sustainable Technologies (ASET)","volume":"15 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced and Sustainable Technologies (ASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58915/aset.v2i1.221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This research uses finite element analysis to investigate the impact of different solder joint sizes on the mechanical aspects. Specifically, a three-dimensional model of a leadless solder joint for surface mount components was created in simulation software. The study analyses lead-free solder joint thermo-mechanical properties, such as maximum stress and strain. The simulation results indicate that the solder joints parameters significantly influence the thermo-mechanical behaviour during temperature cycling tests. The highest stress is observed at the interface between the solder and pad on the large-size solder joint, while the lowest stress (118MPa) is recorded when employing a small-size solder joint. This research contributes to a better understanding the thermo-mechanical characteristics of different solder joint parameters under temperature cycling conditions.