B. Gatos, G. Louloudis, T. Causer, Kris Grint, Verónica Romero, Joan Andreu Sánchez, A. Toselli, E. Vidal
{"title":"Ground-Truth Production in the Transcriptorium Project","authors":"B. Gatos, G. Louloudis, T. Causer, Kris Grint, Verónica Romero, Joan Andreu Sánchez, A. Toselli, E. Vidal","doi":"10.1109/DAS.2014.23","DOIUrl":null,"url":null,"abstract":"Tran Scriptorium is a 3-years project that aims to develop innovative, cost-effective solutions for the indexing, search and full transcription of historical handwritten document images, using Handwritten Text Recognition (HTR) technology. The production of ground-truth (GT) of a dataset of handwritten document images is among the first tasks. We address novel approaches for the faster production of this GT based on crowd-sourcing and on prior-knowledge methods. We also address here a novel low-cost semi-supervised procedure for obtaining pairs of correct line-level aligned detected/extracted text line images and text line transcripts, specially suitable for training models of the HTR technology employed in Tran Scriptorium.","PeriodicalId":220495,"journal":{"name":"2014 11th IAPR International Workshop on Document Analysis Systems","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th IAPR International Workshop on Document Analysis Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAS.2014.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39
Abstract
Tran Scriptorium is a 3-years project that aims to develop innovative, cost-effective solutions for the indexing, search and full transcription of historical handwritten document images, using Handwritten Text Recognition (HTR) technology. The production of ground-truth (GT) of a dataset of handwritten document images is among the first tasks. We address novel approaches for the faster production of this GT based on crowd-sourcing and on prior-knowledge methods. We also address here a novel low-cost semi-supervised procedure for obtaining pairs of correct line-level aligned detected/extracted text line images and text line transcripts, specially suitable for training models of the HTR technology employed in Tran Scriptorium.