On Properties of Derivations in Normed Spaces

Benard Okelo
{"title":"On Properties of Derivations in Normed Spaces","authors":"Benard Okelo","doi":"10.32861/ajams.66.77.79","DOIUrl":null,"url":null,"abstract":"Let δ: Cp→Cp be normal, then the linear map ( ) attains a local minimum at Cp if and only if z Cp such that ( )( ( )≥0. Also let Cp, and let ( ) have the polar decomposition ( ) ( ) then the map attains local minimum on Cp at T if and only if ( ) . Regarding orthogonality, let S Cp and let N(S) have the polar decomposition N(S) = U|N(S)|, then ( ) ( ) for X Cp if ( ) . Moreover, the map has a local minimum at if and only if ( )( ( )) for y . In this paper, we give some results on local minimum and orthogonality of normal derivations in Cp-Classes. We employ some techniques for normal derivations due to Mecheri, Hacene, Bounkhel and Anderson.","PeriodicalId":375032,"journal":{"name":"Academic Journal of Applied Mathematical Sciences","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Applied Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32861/ajams.66.77.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let δ: Cp→Cp be normal, then the linear map ( ) attains a local minimum at Cp if and only if z Cp such that ( )( ( )≥0. Also let Cp, and let ( ) have the polar decomposition ( ) ( ) then the map attains local minimum on Cp at T if and only if ( ) . Regarding orthogonality, let S Cp and let N(S) have the polar decomposition N(S) = U|N(S)|, then ( ) ( ) for X Cp if ( ) . Moreover, the map has a local minimum at if and only if ( )( ( )) for y . In this paper, we give some results on local minimum and orthogonality of normal derivations in Cp-Classes. We employ some techniques for normal derivations due to Mecheri, Hacene, Bounkhel and Anderson.
赋范空间中导数的性质
设δ: Cp→Cp为法线,则线性映射()在Cp处达到局部极小值当且仅当z Cp使得()()≥0。同样设Cp,且设()有极坐标分解()(),则映射在T处达到局部最小值当且仅当()。对于正交性,设S (Cp)和N(S)有极坐标分解N(S) = U|N(S)|,则()()对于X Cp if()。此外,对于y,映射在当且仅当()())处有一个局部最小值。本文给出了p-类正态导数的局部极小性和正交性的一些结果。由于Mecheri, Hacene, Bounkhel和Anderson的原因,我们采用了一些正常推导的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信