Creating Macros for Survival Data in Oncology Study

Jagannath Ghosh
{"title":"Creating Macros for Survival Data in Oncology Study","authors":"Jagannath Ghosh","doi":"10.1179/175709206X372218","DOIUrl":null,"url":null,"abstract":"AbstractIn this paper, we introduce some system functions and macros to create study specific survival variables for oncology clinical trials. We present five variables which show overall survival time, time to disease progression, duration of response, progression free survival and time to treatment failure for one particular study. We will be using survival analysis based on overall survival and censoring information. The purpose of this paper is to show the power and usefulness of SAS in clinical research, specifically studies which require time to event analysis based on death and survival information, such as cancer and HIV.","PeriodicalId":253012,"journal":{"name":"Pharmaceutical Programming","volume":"64 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1179/175709206X372218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

AbstractIn this paper, we introduce some system functions and macros to create study specific survival variables for oncology clinical trials. We present five variables which show overall survival time, time to disease progression, duration of response, progression free survival and time to treatment failure for one particular study. We will be using survival analysis based on overall survival and censoring information. The purpose of this paper is to show the power and usefulness of SAS in clinical research, specifically studies which require time to event analysis based on death and survival information, such as cancer and HIV.
为肿瘤研究中的生存数据创建宏
摘要本文介绍了一些系统功能和宏来创建肿瘤临床试验的研究特异性生存变量。我们提出了五个变量,显示总生存时间,疾病进展时间,反应持续时间,无进展生存和治疗失败的时间为一个特定的研究。我们将使用基于总体生存和审查信息的生存分析。本文的目的是展示SAS在临床研究中的力量和有用性,特别是需要时间进行基于死亡和生存信息的事件分析的研究,如癌症和艾滋病毒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信