Paraphrase Identification Between Two Sentence Using Support Vector Machine

Wahyu Faqih Saputro, E. C. Djamal, Ridwan Ilyas
{"title":"Paraphrase Identification Between Two Sentence Using Support Vector Machine","authors":"Wahyu Faqih Saputro, E. C. Djamal, Ridwan Ilyas","doi":"10.1109/ICEEI47359.2019.8988874","DOIUrl":null,"url":null,"abstract":"Paraphrasing sentence is to express a sentence using another form of language without changing the meaning of the previous sentence. In this study, a system of identification of meanings of sentences has been built using Support Vector Machine (SVM) with Sequential Minimal Optimization (SMO) algorithm, the features used are Euclidean distance, cosine similarity, sentence length 1, sentence length 2, slices between sentences. The test results showed better results on SVM configuration using attribute filters achieving the best results 94.4% in training using the train set test and 61.9% in SVM configuration without using attribute filters.","PeriodicalId":236517,"journal":{"name":"2019 International Conference on Electrical Engineering and Informatics (ICEEI)","volume":"5 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Electrical Engineering and Informatics (ICEEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEI47359.2019.8988874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Paraphrasing sentence is to express a sentence using another form of language without changing the meaning of the previous sentence. In this study, a system of identification of meanings of sentences has been built using Support Vector Machine (SVM) with Sequential Minimal Optimization (SMO) algorithm, the features used are Euclidean distance, cosine similarity, sentence length 1, sentence length 2, slices between sentences. The test results showed better results on SVM configuration using attribute filters achieving the best results 94.4% in training using the train set test and 61.9% in SVM configuration without using attribute filters.
用支持向量机识别两句话之间的释义
释义句是指在不改变前一句意思的情况下,用另一种语言形式表达一个句子。本研究利用支持向量机(SVM)和序列最小优化(SMO)算法构建了一个句子意义识别系统,使用的特征是欧氏距离、余弦相似度、句子长度1、句子长度2、句子之间的切片。测试结果表明,使用属性过滤器的SVM配置效果更好,使用训练集测试的训练效果最好,达到94.4%,不使用属性过滤器的SVM配置效果最好,达到61.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信