Trajectory Based Activity Discovery

Guido Pusiol, F. Brémond, M. Thonnat
{"title":"Trajectory Based Activity Discovery","authors":"Guido Pusiol, F. Brémond, M. Thonnat","doi":"10.1109/AVSS.2010.15","DOIUrl":null,"url":null,"abstract":"This paper proposes a framework to discover activities inan unsupervised manner, and add semantics with minimalsupervision. The framework uses basic trajectory informationas input and goes up to video interpretation. The workreduces the gap between low-level information and semanticinterpretation, building an intermediate layer composedof Primitive Events. The proposed representation for primitiveevents aims at capturing small meaningful motions overthe scene with the advantage of being learnt in an unsupervisedmanner. We propose the discovery of an activity usingthese Primitive Events as the main descriptors. The activitydiscovery is done using only real tracking data. Semanticsare added to the discovered activities and the recognition ofactivities (e.g., “Cooking”, “Eating”) can be automaticallydone with new datasets. Finally we validate the descriptorsby discovering and recognizing activities in a home careapplication dataset.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"72 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper proposes a framework to discover activities inan unsupervised manner, and add semantics with minimalsupervision. The framework uses basic trajectory informationas input and goes up to video interpretation. The workreduces the gap between low-level information and semanticinterpretation, building an intermediate layer composedof Primitive Events. The proposed representation for primitiveevents aims at capturing small meaningful motions overthe scene with the advantage of being learnt in an unsupervisedmanner. We propose the discovery of an activity usingthese Primitive Events as the main descriptors. The activitydiscovery is done using only real tracking data. Semanticsare added to the discovered activities and the recognition ofactivities (e.g., “Cooking”, “Eating”) can be automaticallydone with new datasets. Finally we validate the descriptorsby discovering and recognizing activities in a home careapplication dataset.
基于轨迹的活动发现
本文提出了一个以无监督方式发现活动的框架,并在最小监督的情况下添加语义。该框架使用基本的轨迹信息作为输入,然后进行视频解释。该工作减少了低级信息和语义解释之间的差距,建立了一个由原始事件组成的中间层。提出的原始事件表示旨在捕捉场景中有意义的小运动,其优点是可以以无监督的方式学习。我们建议使用这些原始事件作为主要描述符来发现一个活动。活动发现仅使用真实的跟踪数据完成。添加到发现的活动中的语义和对活动的识别(例如,“烹饪”,“吃饭”)可以用新的数据集自动完成。最后,我们通过发现和识别家庭护理应用数据集中的活动来验证描述符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信