Replacement Strategy of Web Cache Based on Data Mining

Jing Zhang
{"title":"Replacement Strategy of Web Cache Based on Data Mining","authors":"Jing Zhang","doi":"10.1109/3PGCIC.2015.75","DOIUrl":null,"url":null,"abstract":"RFS model is established by the application of RFM data mining theory to Web cache replacement policy, Using K-Means clustering algorithm to analyze RFS model we obtained the value of segmentation of the Web access, and ordered the worst access value web pages of the segmentation data by RFS. When the Web cache replacement occurs, the last web file order was eliminated, and all the Web pages in the buffer re-executed the strategic positioning of access value. Finally, a contrast between the new strategy (in this paper) and the old one (LRU, LFU, SIZE, GDSF) was conducted so as to prove the new one better.","PeriodicalId":395401,"journal":{"name":"2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC)","volume":"57 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3PGCIC.2015.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

RFS model is established by the application of RFM data mining theory to Web cache replacement policy, Using K-Means clustering algorithm to analyze RFS model we obtained the value of segmentation of the Web access, and ordered the worst access value web pages of the segmentation data by RFS. When the Web cache replacement occurs, the last web file order was eliminated, and all the Web pages in the buffer re-executed the strategic positioning of access value. Finally, a contrast between the new strategy (in this paper) and the old one (LRU, LFU, SIZE, GDSF) was conducted so as to prove the new one better.
基于数据挖掘的Web缓存替换策略
将RFM数据挖掘理论应用于Web缓存替换策略中,建立了RFS模型,利用K-Means聚类算法对RFS模型进行分析,得到了Web访问的分段值,并通过RFS对分段数据的最差访问值网页进行排序。当发生Web缓存替换时,最后一个Web文件顺序被消除,缓冲区中的所有Web页面重新执行访问值的战略定位。最后,将新策略(本文)与旧策略(LRU, LFU, SIZE, GDSF)进行对比,以证明新策略更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信