SciDG: Benchmarking Scientific Dynamic Graph Queries

Chenglin Zeng, Chuan Hu, Huajin Wang, Zhihong Shen
{"title":"SciDG: Benchmarking Scientific Dynamic Graph Queries","authors":"Chenglin Zeng, Chuan Hu, Huajin Wang, Zhihong Shen","doi":"10.1145/3603719.3603724","DOIUrl":null,"url":null,"abstract":"Dynamic graphs are increasingly being utilized in domain knowledge modeling and large-scale scientific data management. Managing dynamic graph data requires a graph database system that can handle constantly changing volumes and data versions, while maintaining an acceptable query latency related to versioning. To understand how the design of storage structures affects database performance and assist scientific application developers in finding the optimal storage structure for their dynamic graph application scenarios, we have designed an easy-to-use benchmark framework called SciDG. We also conducted a study on the latencies of five fundamental version-related queries for various scientific application scenarios using SciDG. We evaluated the performance of databases based on three distinct storage principles: Sp-DB, Dp-DB, and Tp-DB. The experimental results indicate that SciDG is a valuable tool for assessing the strengths and weaknesses of different storage structures for dynamic graphs in various scenarios. Additionally, it assists scientists in selecting the most suitable dynamic graph database system for their work.","PeriodicalId":314512,"journal":{"name":"Proceedings of the 35th International Conference on Scientific and Statistical Database Management","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3603719.3603724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic graphs are increasingly being utilized in domain knowledge modeling and large-scale scientific data management. Managing dynamic graph data requires a graph database system that can handle constantly changing volumes and data versions, while maintaining an acceptable query latency related to versioning. To understand how the design of storage structures affects database performance and assist scientific application developers in finding the optimal storage structure for their dynamic graph application scenarios, we have designed an easy-to-use benchmark framework called SciDG. We also conducted a study on the latencies of five fundamental version-related queries for various scientific application scenarios using SciDG. We evaluated the performance of databases based on three distinct storage principles: Sp-DB, Dp-DB, and Tp-DB. The experimental results indicate that SciDG is a valuable tool for assessing the strengths and weaknesses of different storage structures for dynamic graphs in various scenarios. Additionally, it assists scientists in selecting the most suitable dynamic graph database system for their work.
科学动态图查询的基准测试
动态图在领域知识建模和大规模科学数据管理中得到越来越多的应用。管理动态图形数据需要一个图形数据库系统,该系统可以处理不断变化的卷和数据版本,同时保持与版本控制相关的可接受的查询延迟。为了了解存储结构的设计如何影响数据库性能,并帮助科学应用程序开发人员为其动态图形应用程序场景找到最佳的存储结构,我们设计了一个易于使用的基准测试框架,称为SciDG。我们还对使用SciDG的各种科学应用场景的五个基本版本相关查询的延迟进行了研究。我们基于三种不同的存储原则评估数据库的性能:Sp-DB、Dp-DB和Tp-DB。实验结果表明,SciDG是评估不同动态图存储结构在不同场景下的优缺点的有效工具。此外,它还帮助科学家选择最适合他们工作的动态图形数据库系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信