A Generalized Model of PAC Learning and its Applicability

Thomas Brodag, S. Herbold, S. Waack
{"title":"A Generalized Model of PAC Learning and its Applicability","authors":"Thomas Brodag, S. Herbold, S. Waack","doi":"10.1051/ita/2014005","DOIUrl":null,"url":null,"abstract":"We combine a new data model, where the random classification is subjected to rather weak restrictions which in turn are based on the Mammen−Tsybakov [E. Mammen and A.B. Tsybakov, Ann. Statis. 27 (1999) 1808–1829; A.B. Tsybakov, Ann. Statis. 32 (2004) 135–166.] small margin conditions, and the statistical query (SQ) model due to Kearns [M.J. Kearns, J. ACM 45 (1998) 983–1006] to what we refer to as PAC + SQ model. We generalize the class conditional constant noise (CCCN) model introduced by Decatur [S.E. Decatur, in ICML ’97: Proc. of the Fourteenth Int. Conf. on Machine Learn. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA (1997) 83–91] to the noise model orthogonal to a set of query functions. We show that every polynomial time PAC + SQ learning algorithm can be efficiently simulated provided that the random noise rate is orthogonal to the query functions used by the algorithm given the target concept. Furthermore, we extend the constant-partition classification noise (CPCN) model due to Decatur [S.E. Decatur, in ICML ’97: Proc. of the Fourteenth Int. Conf. on Machine Learn. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA (1997) 83–91] to what we call the constant-partition piecewise orthogonal (CPPO) noise model. We show how statistical queries can be simulated in the CPPO scenario, given the partition is known to the learner. We show how to practically use PAC + SQ simulators in the noise model orthogonal to the query space by presenting two examples from bioinformatics and software engineering. This way, we demonstrate that our new noise model is realistic.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ita/2014005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We combine a new data model, where the random classification is subjected to rather weak restrictions which in turn are based on the Mammen−Tsybakov [E. Mammen and A.B. Tsybakov, Ann. Statis. 27 (1999) 1808–1829; A.B. Tsybakov, Ann. Statis. 32 (2004) 135–166.] small margin conditions, and the statistical query (SQ) model due to Kearns [M.J. Kearns, J. ACM 45 (1998) 983–1006] to what we refer to as PAC + SQ model. We generalize the class conditional constant noise (CCCN) model introduced by Decatur [S.E. Decatur, in ICML ’97: Proc. of the Fourteenth Int. Conf. on Machine Learn. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA (1997) 83–91] to the noise model orthogonal to a set of query functions. We show that every polynomial time PAC + SQ learning algorithm can be efficiently simulated provided that the random noise rate is orthogonal to the query functions used by the algorithm given the target concept. Furthermore, we extend the constant-partition classification noise (CPCN) model due to Decatur [S.E. Decatur, in ICML ’97: Proc. of the Fourteenth Int. Conf. on Machine Learn. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA (1997) 83–91] to what we call the constant-partition piecewise orthogonal (CPPO) noise model. We show how statistical queries can be simulated in the CPPO scenario, given the partition is known to the learner. We show how to practically use PAC + SQ simulators in the noise model orthogonal to the query space by presenting two examples from bioinformatics and software engineering. This way, we demonstrate that our new noise model is realistic.
PAC学习的广义模型及其适用性
我们结合了一个新的数据模型,其中随机分类受到相当弱的限制,而这些限制又基于Mammen - Tsybakov [E。曼曼和A.B. Tsybakov, Ann。《统计》27 (1999)1808-1829;安·a·b·茨巴科夫。统计32(2004)135-166。[M.J.]基于Kearns的统计查询(SQ)模型Kearns, J. ACM 45(1998) 983-1006]我们称之为PAC + SQ模型。对Decatur [S.E.]提出的类条件常数噪声(CCCN)模型进行了推广迪凯特,载于《ICML ' 97》:第十四教院院长。关于机器学习。摩根考夫曼出版公司。San Francisco, CA, USA(1997) 83-91]到与一组查询函数正交的噪声模型。我们证明了在给定目标概念的情况下,只要随机噪声率与算法使用的查询函数正交,每个多项式时间的PAC + SQ学习算法都可以被有效地模拟。在此基础上,对基于Decatur [S.E.]的恒分割分类噪声(CPCN)模型进行了扩展迪凯特,载于《ICML ' 97》:第十四教院院长。关于机器学习。摩根考夫曼出版公司。San Francisco, CA, USA(1997) 83-91],我们称之为常分割分段正交(CPPO)噪声模型。我们将展示如何在CPPO场景中模拟统计查询,前提是学习器知道分区。通过介绍生物信息学和软件工程中的两个例子,我们展示了如何在与查询空间正交的噪声模型中实际使用PAC + SQ模拟器。通过这种方式,我们证明了我们的新噪声模型是真实的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信