Quantization for Probability Measures in the Prohorov Metric

S. Graf, H. Luschgy
{"title":"Quantization for Probability Measures in the Prohorov Metric","authors":"S. Graf, H. Luschgy","doi":"10.1137/S0040585X97983687","DOIUrl":null,"url":null,"abstract":"For a probability distribution P on ${\\bf R}^d$ and $n\\in{\\bf N}$ consider $e_n = \\inf \\pi (P,Q)$, where $\\pi$ denotes the Prokhorov metric and the infimum is taken over all discrete probabilities Q with $|\\mbox{supp}(Q) | \\le n$. We study solutions Q of this minimization problem, stability properties, and consistency of empirical estimators. For some classes of distributions we determine the exact rate of convergence to zero of the nth quantization error $e_n$ as $n \\rightarrow\\infty$.","PeriodicalId":142744,"journal":{"name":"Universität Trier, Mathematik/Informatik, Forschungsbericht","volume":"38 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universität Trier, Mathematik/Informatik, Forschungsbericht","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/S0040585X97983687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

For a probability distribution P on ${\bf R}^d$ and $n\in{\bf N}$ consider $e_n = \inf \pi (P,Q)$, where $\pi$ denotes the Prokhorov metric and the infimum is taken over all discrete probabilities Q with $|\mbox{supp}(Q) | \le n$. We study solutions Q of this minimization problem, stability properties, and consistency of empirical estimators. For some classes of distributions we determine the exact rate of convergence to zero of the nth quantization error $e_n$ as $n \rightarrow\infty$.
Prohorov度量中概率测度的量化
对于${\bf R}^d$和$n\in{\bf N}$上的概率分布P,考虑$e_n = \inf \pi (P,Q)$,其中$\pi$表示Prokhorov度量,最小值被取为$|\mbox{supp}(Q) | \le n$的所有离散概率Q。我们研究了这个最小化问题的解Q、稳定性和经验估计量的一致性。对于某些类型的分布,我们确定第n个量化误差$e_n$收敛到零的确切速率为$n \rightarrow\infty$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信