F. Rivera, M. Sanchez-Elez, M. Fernandez, R. Hermida, N. Bagherzadeh
{"title":"Efficient mapping of hierarchical trees on coarse-grain reconfigurable architectures","authors":"F. Rivera, M. Sanchez-Elez, M. Fernandez, R. Hermida, N. Bagherzadeh","doi":"10.1145/1016720.1016731","DOIUrl":null,"url":null,"abstract":"Reconfigurable architectures have become increasingly important in years. We present an approach to the problem of executing 3D graphics interactive applications onto these architectures. The hierarchical trees are usually implemented to reduce the data processed, thereby diminishing the execution time. We have developed a mapping scheme that parallelizes the tree execution onto a SIMD reconfigurable architecture. This mapping scheme considerably reduces the time penalty caused by the possibility of executing different tree nodes in SIMD fashion. We have developed a technique that achieves an efficient hierarchical tree execution taking decisions at execution time. It also promotes the possibility of data coherence in order to reduce the execution time. The experimental results show high performance and efficient resource utilization on tested applications.","PeriodicalId":127038,"journal":{"name":"International Conference on Hardware/Software Codesign and System Synthesis, 2004. CODES + ISSS 2004.","volume":"22 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Hardware/Software Codesign and System Synthesis, 2004. CODES + ISSS 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1016720.1016731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Reconfigurable architectures have become increasingly important in years. We present an approach to the problem of executing 3D graphics interactive applications onto these architectures. The hierarchical trees are usually implemented to reduce the data processed, thereby diminishing the execution time. We have developed a mapping scheme that parallelizes the tree execution onto a SIMD reconfigurable architecture. This mapping scheme considerably reduces the time penalty caused by the possibility of executing different tree nodes in SIMD fashion. We have developed a technique that achieves an efficient hierarchical tree execution taking decisions at execution time. It also promotes the possibility of data coherence in order to reduce the execution time. The experimental results show high performance and efficient resource utilization on tested applications.