Traffic Prediction in Telecom Systems Using Deep Learning

Prashant Kaushik, S. Singh, P. Yadav
{"title":"Traffic Prediction in Telecom Systems Using Deep Learning","authors":"Prashant Kaushik, S. Singh, P. Yadav","doi":"10.1109/ICRITO.2018.8748386","DOIUrl":null,"url":null,"abstract":"The deep neural network implementation in this work analyses, evaluates and generates predictions based on the open source big data of telecommunications activity released by Telecom Italia. The deep learning library used for the neural network implementation is Tensorflow which contains many high and mid-level APIs to achieve the functionality. The model uses random data from the test dataset for generating predictions and Estimator API of Tensorflow for building the neural network. Also Adam optimizer is used for optimizing the loss function with the model’s resulting efficiency to be around 98.6–99.8%.","PeriodicalId":439047,"journal":{"name":"2018 7th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)","volume":"21 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRITO.2018.8748386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The deep neural network implementation in this work analyses, evaluates and generates predictions based on the open source big data of telecommunications activity released by Telecom Italia. The deep learning library used for the neural network implementation is Tensorflow which contains many high and mid-level APIs to achieve the functionality. The model uses random data from the test dataset for generating predictions and Estimator API of Tensorflow for building the neural network. Also Adam optimizer is used for optimizing the loss function with the model’s resulting efficiency to be around 98.6–99.8%.
基于深度学习的电信系统流量预测
这项工作中的深度神经网络实现基于意大利电信发布的电信活动开源大数据进行分析,评估和生成预测。用于神经网络实现的深度学习库是Tensorflow,它包含许多高级和中级api来实现该功能。该模型使用测试数据集中的随机数据进行预测,并使用Tensorflow的Estimator API构建神经网络。此外,Adam优化器用于优化损失函数,模型的最终效率约为98.6-99.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信