Clustering Single-Cell RNA Sequencing Data by Deep Learning Algorithm

Litai Bai, Yuan Zhu, Ming Yi
{"title":"Clustering Single-Cell RNA Sequencing Data by Deep Learning Algorithm","authors":"Litai Bai, Yuan Zhu, Ming Yi","doi":"10.1109/ICBCB52223.2021.9459219","DOIUrl":null,"url":null,"abstract":"The development of single-cell RNA sequencing (scRNA-seq) technology provides a good opportunity to study cell heterogeneity and diversity. Especially, clustering is an important step in scRNA-seq analysis. With the advance of technology, many scRNA-seq data are available, which develop a lot of clustering methods. However, the existing methods usually employ the gene expression data, ignoring the related information between genes and the structure information in data. Therefore, we propose a new method (NDMgcn) to reconstruct the gene expression data based on the association of gene network, and cluster the data by Variational Autoencoder (V AE) and Graph Convolutional Network (GCN). The V AE learns low-dimensional information and the GCN learns structural information. The experimental results indicate that NDMgcn outperforms other popular algorithms in terms of NMI and ARI metrics. It provides a new insight for clustering scRNA-seq data from the network perspective.","PeriodicalId":178168,"journal":{"name":"2021 IEEE 9th International Conference on Bioinformatics and Computational Biology (ICBCB)","volume":"273 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 9th International Conference on Bioinformatics and Computational Biology (ICBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBCB52223.2021.9459219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The development of single-cell RNA sequencing (scRNA-seq) technology provides a good opportunity to study cell heterogeneity and diversity. Especially, clustering is an important step in scRNA-seq analysis. With the advance of technology, many scRNA-seq data are available, which develop a lot of clustering methods. However, the existing methods usually employ the gene expression data, ignoring the related information between genes and the structure information in data. Therefore, we propose a new method (NDMgcn) to reconstruct the gene expression data based on the association of gene network, and cluster the data by Variational Autoencoder (V AE) and Graph Convolutional Network (GCN). The V AE learns low-dimensional information and the GCN learns structural information. The experimental results indicate that NDMgcn outperforms other popular algorithms in terms of NMI and ARI metrics. It provides a new insight for clustering scRNA-seq data from the network perspective.
基于深度学习算法的单细胞RNA测序数据聚类
单细胞RNA测序(scRNA-seq)技术的发展为研究细胞异质性和多样性提供了良好的契机。特别是聚类是scRNA-seq分析的重要步骤。随着技术的进步,scRNA-seq数据越来越多,这些数据发展出了许多聚类方法。然而,现有的方法通常采用基因表达数据,忽略了基因之间的相关信息和数据中的结构信息。为此,我们提出了一种基于基因网络关联的基因表达数据重构方法(NDMgcn),并通过变分自编码器(V AE)和图卷积网络(GCN)对数据进行聚类。vae学习低维信息,GCN学习结构信息。实验结果表明,NDMgcn在NMI和ARI指标方面优于其他流行的算法。它为从网络角度聚类scRNA-seq数据提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信