A Comparative Analysis of Two Neural-Network-Based Estimators for Efficiency Optimization of an Induction Motor Drive

Gerardo Mino-Aguilar, J. M. Moreno-Eguilaz, B. Pryymak, J. Peracaula, J. A. Beristain
{"title":"A Comparative Analysis of Two Neural-Network-Based Estimators for Efficiency Optimization of an Induction Motor Drive","authors":"Gerardo Mino-Aguilar, J. M. Moreno-Eguilaz, B. Pryymak, J. Peracaula, J. A. Beristain","doi":"10.1109/CIEP.2006.312164","DOIUrl":null,"url":null,"abstract":"A comparative analysis on vector-controlled induction motor drive with efficiency optimization using a neural-network-based and a model-losses-based approaches as flux estimator is presented in this paper. On-line estimators for rotor, stator resistances, and mutual inductance are included, two different neural networks were trained varying their inputs, and was used the losses-model-based estimator with some estimated and nominal parameters. Modeling and simulation results are presented to confirm the best performance approach","PeriodicalId":131301,"journal":{"name":"2006 IEEE International Power Electronics Congress","volume":"44 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Power Electronics Congress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIEP.2006.312164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A comparative analysis on vector-controlled induction motor drive with efficiency optimization using a neural-network-based and a model-losses-based approaches as flux estimator is presented in this paper. On-line estimators for rotor, stator resistances, and mutual inductance are included, two different neural networks were trained varying their inputs, and was used the losses-model-based estimator with some estimated and nominal parameters. Modeling and simulation results are presented to confirm the best performance approach
两种基于神经网络的感应电机效率优化估计器的比较分析
本文采用基于神经网络的方法和基于模型损失的方法作为磁链估计器,对具有效率优化的矢量控制异步电动机驱动进行了比较分析。该方法包括转子、定子电阻和互感的在线估计器,对两个不同的神经网络进行了不同输入的训练,并使用了带有一些估计参数和标称参数的基于损失模型的估计器。通过建模和仿真结果验证了该方法的最佳性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信