Automatic Cardiomyopathy Diagnosis with a Cost-sensitive Ensemble Classifier

Qiwei Ye, Linbo Qiao, Hongyi Chen, Q. Tao, Jingjing Xiao
{"title":"Automatic Cardiomyopathy Diagnosis with a Cost-sensitive Ensemble Classifier","authors":"Qiwei Ye, Linbo Qiao, Hongyi Chen, Q. Tao, Jingjing Xiao","doi":"10.1109/acait53529.2021.9731304","DOIUrl":null,"url":null,"abstract":"This paper proposed a cost-sensitive ensemble classifier for automatic cardiomyopathy diagnosis using features extracted from cardiac magnetic resonance images. However, with numerous features extracted from images, it is hard for a single classifier to achieve accurate prediction. In contrast, an ensemble classifier combines multiple weak classifiers which could benefit from each others and improve the performance. Therefore, we proposed a cost-sensitive ensemble classifier assembling five heterogeneous classifiers: logistic regression (LR), Gaussian naive bayes (GNB), support vector machine (SVM), multi-layer perception(MLP), and convolutional neural network(CNN). The weight of each classifier was determined according to the special cost-sensitive function. In the experiment, the proposed method was evaluated on a publicly available Automated Cardiac Diagnosis Challenge (ACDC) dataset [1], where the proposed ensemble classifier achieves a considerable improvement.","PeriodicalId":173633,"journal":{"name":"2021 5th Asian Conference on Artificial Intelligence Technology (ACAIT)","volume":"38 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 5th Asian Conference on Artificial Intelligence Technology (ACAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/acait53529.2021.9731304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposed a cost-sensitive ensemble classifier for automatic cardiomyopathy diagnosis using features extracted from cardiac magnetic resonance images. However, with numerous features extracted from images, it is hard for a single classifier to achieve accurate prediction. In contrast, an ensemble classifier combines multiple weak classifiers which could benefit from each others and improve the performance. Therefore, we proposed a cost-sensitive ensemble classifier assembling five heterogeneous classifiers: logistic regression (LR), Gaussian naive bayes (GNB), support vector machine (SVM), multi-layer perception(MLP), and convolutional neural network(CNN). The weight of each classifier was determined according to the special cost-sensitive function. In the experiment, the proposed method was evaluated on a publicly available Automated Cardiac Diagnosis Challenge (ACDC) dataset [1], where the proposed ensemble classifier achieves a considerable improvement.
成本敏感集成分类器的心肌病自动诊断
本文提出了一种成本敏感的综合分类器,用于心肌病的自动诊断。然而,由于从图像中提取了大量的特征,单个分类器很难实现准确的预测。相比之下,集成分类器将多个弱分类器组合在一起,这些弱分类器可以相互受益并提高性能。因此,我们提出了一种代价敏感的集成分类器,该分类器由五个异构分类器组成:逻辑回归(LR)、高斯朴素贝叶斯(GNB)、支持向量机(SVM)、多层感知(MLP)和卷积神经网络(CNN)。根据特殊的代价敏感函数确定每个分类器的权重。在实验中,在公开可用的自动心脏诊断挑战(ACDC)数据集[1]上对所提出的方法进行了评估,其中所提出的集成分类器实现了相当大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信