Optimal scheduling of in-situ analysis for large-scale scientific simulations

Preeti Malakar, V. Vishwanath, T. Munson, Christopher Knight, M. Hereld, S. Leyffer, M. Papka
{"title":"Optimal scheduling of in-situ analysis for large-scale scientific simulations","authors":"Preeti Malakar, V. Vishwanath, T. Munson, Christopher Knight, M. Hereld, S. Leyffer, M. Papka","doi":"10.1145/2807591.2807656","DOIUrl":null,"url":null,"abstract":"Today's leadership computing facilities have enabled the execution of transformative simulations at unprecedented scales. However, analyzing the huge amount of output from these simulations remains a challenge. Most analyses of this output is performed in post-processing mode at the end of the simulation. The time to read the output for the analysis can be significantly high due to poor I/O bandwidth, which increases the end-to-end simulation-analysis time. Simulation-time analysis can reduce this end-to-end time. In this work, we present the scheduling of in-situ analysis as a numerical optimization problem to maximize the number of online analyses subject to resource constraints such as I/O bandwidth, network bandwidth, rate of computation and available memory. We demonstrate the effectiveness of our approach through two application case studies on the IBM Blue Gene/Q system.","PeriodicalId":117494,"journal":{"name":"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"324 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2807591.2807656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

Today's leadership computing facilities have enabled the execution of transformative simulations at unprecedented scales. However, analyzing the huge amount of output from these simulations remains a challenge. Most analyses of this output is performed in post-processing mode at the end of the simulation. The time to read the output for the analysis can be significantly high due to poor I/O bandwidth, which increases the end-to-end simulation-analysis time. Simulation-time analysis can reduce this end-to-end time. In this work, we present the scheduling of in-situ analysis as a numerical optimization problem to maximize the number of online analyses subject to resource constraints such as I/O bandwidth, network bandwidth, rate of computation and available memory. We demonstrate the effectiveness of our approach through two application case studies on the IBM Blue Gene/Q system.
大型科学模拟现场分析的优化调度
当今领先的计算设备已经能够以前所未有的规模执行变革性模拟。然而,分析这些模拟的大量输出仍然是一个挑战。该输出的大多数分析是在模拟结束时以后处理模式执行的。由于较差的I/O带宽,读取分析输出的时间可能非常长,这会增加端到端模拟分析时间。仿真时间分析可以减少端到端时间。在这项工作中,我们提出了原位分析的调度作为一个数值优化问题,以最大限度地增加在线分析的数量,受制于资源约束,如I/O带宽,网络带宽,计算速率和可用内存。我们通过IBM Blue Gene/Q系统上的两个应用案例研究证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信