Automatic segmentation of pulmonary vasculature in thoracic CT scans with local thresholding and airway wall removal

E. V. Dongen, B. Ginneken
{"title":"Automatic segmentation of pulmonary vasculature in thoracic CT scans with local thresholding and airway wall removal","authors":"E. V. Dongen, B. Ginneken","doi":"10.1109/ISBI.2010.5490088","DOIUrl":null,"url":null,"abstract":"A system for the automatic segmentation of the pulmonary vasculature in thoracic CT scans is presented. The method is based on a vesselness filter and includes a local thresholding procedure to accurately segment vessels of varying diameters. The output of an automatic segmentation of the airways is used to remove false positive detections in the airway walls. The algorithm is tested with a quantitative evaluation framework based on manual classification of well-dispersed local maxima and random points on ten axial sections in a scan. The algorithm has been applied to ten low dose CT scans annotated by two observers. Results show that local thresholding and airway wall removal both improve segmentation performance and that the accuracy of the proposed method approaches the interobserver variability.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

A system for the automatic segmentation of the pulmonary vasculature in thoracic CT scans is presented. The method is based on a vesselness filter and includes a local thresholding procedure to accurately segment vessels of varying diameters. The output of an automatic segmentation of the airways is used to remove false positive detections in the airway walls. The algorithm is tested with a quantitative evaluation framework based on manual classification of well-dispersed local maxima and random points on ten axial sections in a scan. The algorithm has been applied to ten low dose CT scans annotated by two observers. Results show that local thresholding and airway wall removal both improve segmentation performance and that the accuracy of the proposed method approaches the interobserver variability.
基于局部阈值和气道壁去除的胸部CT扫描肺血管自动分割
提出了一种胸部CT扫描中肺血管的自动分割系统。该方法基于血管度滤波器,并包括一个局部阈值处理,以准确分割不同直径的血管。气道的自动分割输出用于去除气道壁的假阳性检测。用基于人工分类的定量评价框架对该算法进行了测试,该框架对一次扫描中十个轴向切片上分散良好的局部最大值和随机点进行了分类。该算法已应用于由两个观察者注释的10个低剂量CT扫描。结果表明,局部阈值分割和气道壁去除都提高了分割性能,并且该方法的准确率接近观察者间的可变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信