On the invasion of distal dendrites of thalamocortical neurones by action potentials and sensory EPSPs

Károly Antal , Zsuzsa Emri , Vincenzo Crunelli
{"title":"On the invasion of distal dendrites of thalamocortical neurones by action potentials and sensory EPSPs","authors":"Károly Antal ,&nbsp;Zsuzsa Emri ,&nbsp;Vincenzo Crunelli","doi":"10.1016/S1472-9288(01)00010-3","DOIUrl":null,"url":null,"abstract":"<div><p>The effects of different dendritic geometries and distal dendritic Na<sup>+</sup><span> current distributions on the propagation of action potentials (APs) and sensory EPSPs were investigated using a multi-compartment model of thalamocortical (TC) neurones where the somatic and proximal dendritic distribution of voltage-gated channels matched the ones measured experimentally, i.e. a uniform distribution of K</span><sup>+</sup> currents and a non-uniform distribution of Na<sup>+</sup> and T-type Ca<sup>2+</sup> currents.</p><p>Our simulations indicated that the distal dendritic Na<sup>+</sup> channel density has not to be larger than 50% of the somatic density in order to reproduce the electrical activities recorded experimentally from the soma and proximal dendrites of TC neurones. Moreover, we could highlight the existence of a distinct threshold density of distal dendritic Na<sup>+</sup> channels necessary to support the regeneration of APs in this part of the dendritic tree: this threshold density was smaller for non-branching than for heavily branching dendrites.</p><p>The amplitude of the somatic EPSP mainly depended on the number of simultaneously activated synapses on any dendritic branch, despite large differences in the size of the dendritic EPSPs. The amplitude of the EPSP on a proximal dendrite was also dependent on the number and relative location of simultaneously activated synapses on all other proximal dendritic branches. The dendritic geometry did not affect these features of the simulated sensory EPSPs. In addition, the duration of somatic and proximal dendritic EPSPs was markedly increased (100%) in the presence of somatic and proximal dendritic T-type Ca<sup>2+</sup> current.</p><p>The backpropagation of EPSPs to distal dendrites was affected by the dendritic Na<sup>+</sup> channel distributions, but even in the absence of distal dendritic Na<sup>+</sup> channels the EPSP reached the dendritic ends with less than 40% decrease in amplitude. Overall, the amplitude of the backpropagating EPSP was not greatly affected by the dendritic geometry, though a smaller amplitude reduction in unbranched than in heavily branching dendrites was observed.</p></div>","PeriodicalId":74923,"journal":{"name":"Thalamus & related systems","volume":"1 2","pages":"Pages 105-116"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1472-9288(01)00010-3","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thalamus & related systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1472928801000103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The effects of different dendritic geometries and distal dendritic Na+ current distributions on the propagation of action potentials (APs) and sensory EPSPs were investigated using a multi-compartment model of thalamocortical (TC) neurones where the somatic and proximal dendritic distribution of voltage-gated channels matched the ones measured experimentally, i.e. a uniform distribution of K+ currents and a non-uniform distribution of Na+ and T-type Ca2+ currents.

Our simulations indicated that the distal dendritic Na+ channel density has not to be larger than 50% of the somatic density in order to reproduce the electrical activities recorded experimentally from the soma and proximal dendrites of TC neurones. Moreover, we could highlight the existence of a distinct threshold density of distal dendritic Na+ channels necessary to support the regeneration of APs in this part of the dendritic tree: this threshold density was smaller for non-branching than for heavily branching dendrites.

The amplitude of the somatic EPSP mainly depended on the number of simultaneously activated synapses on any dendritic branch, despite large differences in the size of the dendritic EPSPs. The amplitude of the EPSP on a proximal dendrite was also dependent on the number and relative location of simultaneously activated synapses on all other proximal dendritic branches. The dendritic geometry did not affect these features of the simulated sensory EPSPs. In addition, the duration of somatic and proximal dendritic EPSPs was markedly increased (100%) in the presence of somatic and proximal dendritic T-type Ca2+ current.

The backpropagation of EPSPs to distal dendrites was affected by the dendritic Na+ channel distributions, but even in the absence of distal dendritic Na+ channels the EPSP reached the dendritic ends with less than 40% decrease in amplitude. Overall, the amplitude of the backpropagating EPSP was not greatly affected by the dendritic geometry, though a smaller amplitude reduction in unbranched than in heavily branching dendrites was observed.

动作电位和感觉epsp对丘脑皮质神经元远端树突的侵袭
采用多室模型研究了不同树突几何形状和远端Na+电流分布对动作电位(APs)和感觉epsp传播的影响,其中体细胞和近端电压门控通道的树突分布与实验测量的一致,即K+电流均匀分布,Na+和t型Ca2+电流不均匀分布。我们的模拟表明,为了再现实验记录的TC神经元体细胞和近端树突的电活动,远端树突Na+通道密度必须不大于体细胞密度的50%。此外,我们可以强调,在树突树的这一部分,远端树突Na+通道存在明显的阈值密度,这是支持ap再生所必需的:无分支树突的阈值密度小于重分支树突的阈值密度。体细胞EPSP的振幅主要取决于任何树突分支上同时激活的突触的数量,尽管树突EPSP的大小存在很大差异。近端树突上EPSP的振幅也依赖于所有其他近端树突分支上同时激活的突触的数量和相对位置。树突几何形状不影响模拟感官epsp的这些特征。此外,在体细胞和近端树突t型Ca2+电流存在下,体细胞和近端树突epsp的持续时间明显增加(100%)。EPSP向远端树突的反向传播受Na+通道分布的影响,但即使在没有Na+通道的情况下,EPSP到达远端树突的振幅下降幅度小于40%。总体而言,反向传播的EPSP振幅受树突几何形状的影响不大,但未分支树突的振幅下降幅度小于重分支树突。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信