Scalable Video Transcoding in Public Clouds

Qingye Jiang, Young Choon Lee, Albert Y. Zomaya
{"title":"Scalable Video Transcoding in Public Clouds","authors":"Qingye Jiang, Young Choon Lee, Albert Y. Zomaya","doi":"10.1109/CCGRID.2019.00017","DOIUrl":null,"url":null,"abstract":"In this paper, we present the challenges involved in large-scale video transcoding application in public clouds. We introduce the architecture of an existing video transcoding system which is tightly coupled with an existing video sharing service. We examine the horizontal scalability of the video transcoding system on AWS EC2. With an online transaction processing (OLTP) model, the system achieves linear horizontal scalability up to 1,000 vCPU cores, but starts to experience performance degradation beyond that. We analyze the resource consumption pattern of the existing system, then introduce an improved architecture by adding a message queue layer. This effectively decouples the video transcoding system from the video sharing service and converts the OLTP model into a batch processing model. Large-scale evaluations on AWS EC2 indicate that the improved design maintains linear horizontal scalability at 10,100 vCPU cores. The hybrid design of the system allows it to be easily adapted for other batch processing use cases without the need to modify or recompile the application.","PeriodicalId":234571,"journal":{"name":"2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"408 23","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2019.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we present the challenges involved in large-scale video transcoding application in public clouds. We introduce the architecture of an existing video transcoding system which is tightly coupled with an existing video sharing service. We examine the horizontal scalability of the video transcoding system on AWS EC2. With an online transaction processing (OLTP) model, the system achieves linear horizontal scalability up to 1,000 vCPU cores, but starts to experience performance degradation beyond that. We analyze the resource consumption pattern of the existing system, then introduce an improved architecture by adding a message queue layer. This effectively decouples the video transcoding system from the video sharing service and converts the OLTP model into a batch processing model. Large-scale evaluations on AWS EC2 indicate that the improved design maintains linear horizontal scalability at 10,100 vCPU cores. The hybrid design of the system allows it to be easily adapted for other batch processing use cases without the need to modify or recompile the application.
公共云中可扩展的视频转码
在本文中,我们提出了公共云中大规模视频转码应用所涉及的挑战。我们介绍了一个现有的视频转码系统的架构,该系统与现有的视频共享服务紧密耦合。我们研究了AWS EC2上视频转码系统的水平可扩展性。使用在线事务处理(OLTP)模型,系统可以实现高达1,000个vCPU内核的线性水平可伸缩性,但在此基础上开始出现性能下降。分析了现有系统的资源消耗模式,并通过增加消息队列层引入了改进的体系结构。这有效地将视频转码系统与视频共享服务解耦,并将OLTP模型转换为批处理模型。在AWS EC2上的大规模评估表明,改进的设计在10,100个vCPU内核上保持线性水平可扩展性。系统的混合设计允许它很容易适应其他批处理用例,而不需要修改或重新编译应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信