HMM-based visual speech recognition using intensity and location normalization

O. Vanegas, A. Tanaka, K. Tokuda, T. Kitamura
{"title":"HMM-based visual speech recognition using intensity and location normalization","authors":"O. Vanegas, A. Tanaka, K. Tokuda, T. Kitamura","doi":"10.21437/ICSLP.1998-270","DOIUrl":null,"url":null,"abstract":"This paper describes intensity and location normalization techniques for improving the performance of visual speech recognizers used in audio-visual speech recognition. For auditory speech recognition, there exist many methods for dealing with channel characteristics and speaker individualities, e.g., CMN (cepstral mean normalization), SAT (speaker adaptive training). We present two techniques similar to CMN and SAT, respectively, for intensity and location normalization in visual speech recognition. Word recognition experiments based on HMM show that a significant improvement in recogniton performance is achieved by combining the two techniques.","PeriodicalId":117113,"journal":{"name":"5th International Conference on Spoken Language Processing (ICSLP 1998)","volume":"127 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Spoken Language Processing (ICSLP 1998)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/ICSLP.1998-270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper describes intensity and location normalization techniques for improving the performance of visual speech recognizers used in audio-visual speech recognition. For auditory speech recognition, there exist many methods for dealing with channel characteristics and speaker individualities, e.g., CMN (cepstral mean normalization), SAT (speaker adaptive training). We present two techniques similar to CMN and SAT, respectively, for intensity and location normalization in visual speech recognition. Word recognition experiments based on HMM show that a significant improvement in recogniton performance is achieved by combining the two techniques.
基于hmm的视觉语音识别,使用强度和位置归一化
本文介绍了在视听语音识别中用于提高视觉语音识别器性能的强度和位置归一化技术。对于听觉语音识别,处理通道特征和说话人个性的方法有很多,如CMN(倒谱均值归一化)、SAT(说话人自适应训练)等。我们提出了两种类似于CMN和SAT的技术,分别用于视觉语音识别中的强度和位置归一化。基于HMM的词识别实验表明,两种方法的结合显著提高了识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信