Deciphering Gene Sets Annotations with Ontology Based Visualization

Aarón Ayllón-Benítez, P. Thébault, J. Fernández-breis, Manuel Quesada-Martínez, Fleur Mougin, Romain Bourqui
{"title":"Deciphering Gene Sets Annotations with Ontology Based Visualization","authors":"Aarón Ayllón-Benítez, P. Thébault, J. Fernández-breis, Manuel Quesada-Martínez, Fleur Mougin, Romain Bourqui","doi":"10.1109/iV.2017.18","DOIUrl":null,"url":null,"abstract":"Nowadays, one of the main challenges in biology is to make use of several sources of data to improve our understanding of life. When analyzing experimental data, researchers aim at clustering genes that show a similar behavior through specific external conditions. Thus, the functional interpretation of genes is crucial and involves making use of the whole subset of terms that annotate these genes and which can be relatively large and redundant. The manual expertise to clearly decipher the main functions that may be related to the gene set is timeconsuming and becomes impracticable when the number of gene sets increases, like in the case of vaccine/drug trials. To overcome this drawback, it may be necessary to reduce the dataset with the aim to apply visualization approaches. In this paper, we propose a new pipeline combining enrichment and annotation terms simplification to produce a synthetic visualization of several gene sets simultaneously. We illustrate the efficiency of our method on a case study aiming at analyzing the immune response in diseases.","PeriodicalId":410876,"journal":{"name":"2017 21st International Conference Information Visualisation (IV)","volume":"193 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 21st International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iV.2017.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Nowadays, one of the main challenges in biology is to make use of several sources of data to improve our understanding of life. When analyzing experimental data, researchers aim at clustering genes that show a similar behavior through specific external conditions. Thus, the functional interpretation of genes is crucial and involves making use of the whole subset of terms that annotate these genes and which can be relatively large and redundant. The manual expertise to clearly decipher the main functions that may be related to the gene set is timeconsuming and becomes impracticable when the number of gene sets increases, like in the case of vaccine/drug trials. To overcome this drawback, it may be necessary to reduce the dataset with the aim to apply visualization approaches. In this paper, we propose a new pipeline combining enrichment and annotation terms simplification to produce a synthetic visualization of several gene sets simultaneously. We illustrate the efficiency of our method on a case study aiming at analyzing the immune response in diseases.
基于本体可视化的基因集注释解译
如今,生物学的主要挑战之一是利用多种数据来源来提高我们对生命的理解。在分析实验数据时,研究人员的目标是通过特定的外部条件将表现出相似行为的基因聚类。因此,基因的功能解释是至关重要的,并且涉及到使用注释这些基因的整个术语子集,这些术语可能相对较大且冗余。明确破译可能与基因集有关的主要功能的手工专门知识非常耗时,并且在基因集数量增加时变得不切实际,例如在疫苗/药物试验的情况下。为了克服这个缺点,可能有必要减少数据集,以便应用可视化方法。在本文中,我们提出了一个新的管道,将浓缩和注释术语简化相结合,同时产生多个基因集的综合可视化。我们在一个旨在分析疾病免疫反应的案例研究中说明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信