Interactive Exploration of Left Atrium Population-Level Morphology in Atrial Fibrillation Patients

Tim Sodergren, A. Goparaju, A. Morris, E. Kholmovski, N. Marrouche, J. Cates, S. Elhabian
{"title":"Interactive Exploration of Left Atrium Population-Level Morphology in Atrial Fibrillation Patients","authors":"Tim Sodergren, A. Goparaju, A. Morris, E. Kholmovski, N. Marrouche, J. Cates, S. Elhabian","doi":"10.22489/CinC.2018.377","DOIUrl":null,"url":null,"abstract":"We have developed computational methods for interactively exploring the shape of the left-atrium in a population of atrial fibrillation patients. We analyze the LA shape through a shape-learning algorithm termed as particle-based modeling (PBM), in which we extract surface contours from a population of images and then parameterize population-level shape statistics through the automatic placement of a dense set of homologous landmark positions (aka correspondences) using an optimization on information content. We then generate a 2-D embedding of the resulting high-dimensional dataset which allows us to visualize the data on a scatter plot, with each data point representing a single sample. This parameterization of the shape characteristics of samples collapsed onto a single plot gives us a visual representation of the population-level morphology of the data. Cardiac MR angiography data from 212 AF patients was collected retrospectively from a database of AF patients at the University of Utah. From the 2-D scatter plot, we were able to interactively select individual samples, view their shapes, and see associated clinical data. We can also map new patients to infer their relations to other patients in the population via querying nearby samples and viewing their clinical data.","PeriodicalId":215521,"journal":{"name":"2018 Computing in Cardiology Conference (CinC)","volume":"49 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Computing in Cardiology Conference (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2018.377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We have developed computational methods for interactively exploring the shape of the left-atrium in a population of atrial fibrillation patients. We analyze the LA shape through a shape-learning algorithm termed as particle-based modeling (PBM), in which we extract surface contours from a population of images and then parameterize population-level shape statistics through the automatic placement of a dense set of homologous landmark positions (aka correspondences) using an optimization on information content. We then generate a 2-D embedding of the resulting high-dimensional dataset which allows us to visualize the data on a scatter plot, with each data point representing a single sample. This parameterization of the shape characteristics of samples collapsed onto a single plot gives us a visual representation of the population-level morphology of the data. Cardiac MR angiography data from 212 AF patients was collected retrospectively from a database of AF patients at the University of Utah. From the 2-D scatter plot, we were able to interactively select individual samples, view their shapes, and see associated clinical data. We can also map new patients to infer their relations to other patients in the population via querying nearby samples and viewing their clinical data.
心房颤动患者左心房群体形态的互动探索
我们已经开发了计算方法,交互式地探索左心房的形状在心房颤动患者的人口。我们通过一种称为基于粒子的建模(PBM)的形状学习算法来分析LA形状,其中我们从图像种群中提取表面轮廓,然后通过对信息内容进行优化,通过自动放置一组密集的同源地标位置(又名对应)来参数化种群级形状统计。然后,我们生成生成的高维数据集的二维嵌入,这使我们能够在散点图上可视化数据,每个数据点代表一个样本。将折叠到单个图上的样本的形状特征参数化,使我们能够直观地表示数据的总体水平形态。从犹他大学的房颤患者数据库中回顾性收集了212例房颤患者的心脏MR血管造影数据。从二维散点图中,我们能够交互式地选择单个样本,查看它们的形状,并查看相关的临床数据。我们还可以绘制新患者的地图,通过查询附近的样本和查看他们的临床数据来推断他们与人群中其他患者的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信