Parallel FPGA implementation of self-organizing maps

K. Ben Khalifa, B. Girau, F. Alexandre, M. H. Bedoui
{"title":"Parallel FPGA implementation of self-organizing maps","authors":"K. Ben Khalifa, B. Girau, F. Alexandre, M. H. Bedoui","doi":"10.1109/ICM.2004.1434765","DOIUrl":null,"url":null,"abstract":"This paper presents an area-saving parallel implementation of a self-organizing map neural network (SOM) on FPGA. The purpose is to make available a finer grain of parallelism to be used in massively SIMD parallel SOM system architectures. We have handled a serial arithmetics (most significant bit first: MSBF and least significant bit first: LSBF), to process the different mathematical operations. Above all, our work has been oriented in such a way to get a light, easy to wear system for classification of vigilance states in humans from electroencephalographic (EEG) signals. The performances of our implementation in terms of area, speed and especially power consumption are highly satisfactory.","PeriodicalId":359193,"journal":{"name":"Proceedings. The 16th International Conference on Microelectronics, 2004. ICM 2004.","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The 16th International Conference on Microelectronics, 2004. ICM 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2004.1434765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

This paper presents an area-saving parallel implementation of a self-organizing map neural network (SOM) on FPGA. The purpose is to make available a finer grain of parallelism to be used in massively SIMD parallel SOM system architectures. We have handled a serial arithmetics (most significant bit first: MSBF and least significant bit first: LSBF), to process the different mathematical operations. Above all, our work has been oriented in such a way to get a light, easy to wear system for classification of vigilance states in humans from electroencephalographic (EEG) signals. The performances of our implementation in terms of area, speed and especially power consumption are highly satisfactory.
自组织映射的并行FPGA实现
提出了一种基于FPGA的自组织映射神经网络(SOM)的节省面积并行实现方法。目的是在大规模SIMD并行SOM系统架构中提供更细粒度的并行性。我们已经处理了一个串行算法(最高有效位优先:MSBF和最低有效位优先:LSBF),以处理不同的数学运算。最重要的是,我们的工作一直以这样一种方式为导向,即获得一种轻便,易于佩戴的系统,用于从脑电图(EEG)信号中分类人类的警觉状态。我们的实现在面积,速度,特别是功耗方面的性能非常令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信