A Syndrome-Based Autoencoder For Point Cloud Geometry Compression

S. Milani
{"title":"A Syndrome-Based Autoencoder For Point Cloud Geometry Compression","authors":"S. Milani","doi":"10.1109/ICIP40778.2020.9190647","DOIUrl":null,"url":null,"abstract":"Point cloud compression has been extensively-investigated in the past twenty years to find effective solutions that reduce the coded bit stream and permits adapting the coded bit rate to different scenarios. Despite these efforts, predictive strategies have so far performed poorly because of the low correlation level of the input data and the flexibility requirements, which imply minimizing the decoding dependences.The current paper proposes a convolutional autoencoder that applies the principles of Distributed Source Coding (DSC) to the deep representations of voxelized point cloud geometry data. The hidden variables, called syndromes, enable reconstructing the coded point cloud geometry from different reference data. The proposed strategy overcomes the state-of-the-art solutions in terms of flexibility and rate-distortion performance.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"62 30","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9190647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Point cloud compression has been extensively-investigated in the past twenty years to find effective solutions that reduce the coded bit stream and permits adapting the coded bit rate to different scenarios. Despite these efforts, predictive strategies have so far performed poorly because of the low correlation level of the input data and the flexibility requirements, which imply minimizing the decoding dependences.The current paper proposes a convolutional autoencoder that applies the principles of Distributed Source Coding (DSC) to the deep representations of voxelized point cloud geometry data. The hidden variables, called syndromes, enable reconstructing the coded point cloud geometry from different reference data. The proposed strategy overcomes the state-of-the-art solutions in terms of flexibility and rate-distortion performance.
基于证型的点云几何压缩自编码器
在过去的二十年里,人们对点云压缩进行了广泛的研究,以找到有效的解决方案,减少编码比特流,并允许根据不同的场景调整编码比特率。尽管做出了这些努力,但由于输入数据的低相关性和灵活性要求,预测策略到目前为止表现不佳,这意味着最小化解码依赖。本文提出了一种卷积自编码器,它将分布式源编码(DSC)的原理应用于体素化点云几何数据的深度表示。隐藏变量,称为综合征,可以从不同的参考数据重建编码的点云几何。所提出的策略在灵活性和率失真性能方面克服了最先进的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信