The Lie algebra structure of spin systems and their controllability properties

F. Albertini, D. D’Alessandro
{"title":"The Lie algebra structure of spin systems and their controllability properties","authors":"F. Albertini, D. D’Alessandro","doi":"10.1109/CDC.2001.980658","DOIUrl":null,"url":null,"abstract":"In this paper, we provide a complete analysis of the Lie algebra structure of a system of n interacting spin 1/2 particles with different gyromagnetic ratios in an electro-magnetic field. We relate the structure of this Lie algebra to the properties of a graph whose nodes represent the particles and an edge connects two nodes if and only if the interaction between the two corresponding particles is active. We prove that for these systems all the controllability notions, including the possibility of driving the state or the evolution operator of the system, are equivalent. We also give a necessary and sufficient condition for controllability in terms of the properties of the above described graph. We provide extensions to the case of possibly equal gyromagnetic ratios.","PeriodicalId":131411,"journal":{"name":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","volume":"110 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2001.980658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we provide a complete analysis of the Lie algebra structure of a system of n interacting spin 1/2 particles with different gyromagnetic ratios in an electro-magnetic field. We relate the structure of this Lie algebra to the properties of a graph whose nodes represent the particles and an edge connects two nodes if and only if the interaction between the two corresponding particles is active. We prove that for these systems all the controllability notions, including the possibility of driving the state or the evolution operator of the system, are equivalent. We also give a necessary and sufficient condition for controllability in terms of the properties of the above described graph. We provide extensions to the case of possibly equal gyromagnetic ratios.
自旋系统的李代数结构及其可控性
本文完整地分析了电磁场中n个自旋为1/2且具有不同旋磁比的相互作用粒子的李代数结构。我们将这个李代数的结构与一个图的性质联系起来,这个图的节点表示粒子,当且仅当两个相应的粒子之间的相互作用是活跃的,一条边连接两个节点。我们证明了这些系统的所有可控性概念,包括驱动状态的可能性或系统的演化算子,都是等价的。根据图的性质,给出了图的可控性的充分必要条件。我们提供了可能相等的回旋磁比情况的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信