Classification of Space Particle Events using Supervised Machine Learning Algorithms

Rijad Sarić, Junchao Chen, M. Krstic, Edhem Čustović, G. Panic, Jasmin Kevric, D. Jokić
{"title":"Classification of Space Particle Events using Supervised Machine Learning Algorithms","authors":"Rijad Sarić, Junchao Chen, M. Krstic, Edhem Čustović, G. Panic, Jasmin Kevric, D. Jokić","doi":"10.1109/DSAA53316.2021.9564114","DOIUrl":null,"url":null,"abstract":"Solar Particle Events (SPEs) generate cosmic radiation of different magnitude in a time span of several hours or even days. This contributes to an increased probability of higher magnitude Single-Event Upsets (SEUs) occurrence in space applications. It is critical to establish early detection of SEU rate or Soft Error Rate (SRE) changes to enable timely radiation hardening measures. This research paper focuses on the high-accuracy detection of SPEs using the manually collected space data. Additionally, the prediction of SRE increase or decrease was established with the seven widely used supervised machine learning algorithms. Excellent performance of 97.82%, including a high F1-score, was achieved during the presence of SPE using $k$-Nearest Neighbor algorithms.","PeriodicalId":129612,"journal":{"name":"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)","volume":"28 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA53316.2021.9564114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Solar Particle Events (SPEs) generate cosmic radiation of different magnitude in a time span of several hours or even days. This contributes to an increased probability of higher magnitude Single-Event Upsets (SEUs) occurrence in space applications. It is critical to establish early detection of SEU rate or Soft Error Rate (SRE) changes to enable timely radiation hardening measures. This research paper focuses on the high-accuracy detection of SPEs using the manually collected space data. Additionally, the prediction of SRE increase or decrease was established with the seven widely used supervised machine learning algorithms. Excellent performance of 97.82%, including a high F1-score, was achieved during the presence of SPE using $k$-Nearest Neighbor algorithms.
使用监督机器学习算法的空间粒子事件分类
太阳粒子事件(spe)在几个小时甚至几天的时间跨度内产生不同大小的宇宙辐射。这增加了空间应用中发生更大规模单事件扰动(seu)的可能性。建立SEU率或软错误率(SRE)变化的早期检测是及时采取辐射硬化措施的关键。本文的研究重点是利用人工采集的空间数据对spe进行高精度检测。此外,利用7种广泛使用的有监督机器学习算法建立了SRE增减预测。在SPE存在的情况下,使用$k$-最近邻算法获得了97.82%的优异性能,其中包括较高的f1分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信