Face Representation By Using Non-tensor Product Wavelets

Xinge You, Dan Zhang, Qiuhui Chen, P. Wang, Y. Tang
{"title":"Face Representation By Using Non-tensor Product Wavelets","authors":"Xinge You, Dan Zhang, Qiuhui Chen, P. Wang, Y. Tang","doi":"10.1109/ICPR.2006.534","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach to represent face by using non-tensor product bivariate wavelet filters. A new non-tensor product bivariate wavelet filter banks with linear phase are constructed from the centrally symmetric matrices. Our investigations demonstrate that these filter banks have a matrix factorization and they are capable of representing facial features for recognition. The implementations of our algorithm are made of three parts: First, face images are represented by the lowest resolution sub-bands after 2-level new non-tensor product wavelet decomposition. Second, the principal component analysis (PCA) feature selection scheme is adopted to reduce the computational complexity of feature representation. Finally, support vector machines (SVM) is applied for classification. The experimental results show that our method is superior to other methods in terms of recognition accuracy and efficiency","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"326 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

This paper presents a new approach to represent face by using non-tensor product bivariate wavelet filters. A new non-tensor product bivariate wavelet filter banks with linear phase are constructed from the centrally symmetric matrices. Our investigations demonstrate that these filter banks have a matrix factorization and they are capable of representing facial features for recognition. The implementations of our algorithm are made of three parts: First, face images are represented by the lowest resolution sub-bands after 2-level new non-tensor product wavelet decomposition. Second, the principal component analysis (PCA) feature selection scheme is adopted to reduce the computational complexity of feature representation. Finally, support vector machines (SVM) is applied for classification. The experimental results show that our method is superior to other methods in terms of recognition accuracy and efficiency
基于非张量积小波的人脸表示
提出了一种用非张量积二元小波滤波器表示人脸的新方法。从中心对称矩阵出发,构造了一种新的线性相位的非张量积二元小波滤波器组。我们的研究表明,这些滤波器组具有矩阵分解,它们能够表示面部特征进行识别。该算法的实现分为三个部分:首先,对人脸图像进行2级新非张量积小波分解后,用最低分辨率子带表示。其次,采用主成分分析(PCA)特征选择方案,降低特征表示的计算复杂度;最后,应用支持向量机(SVM)进行分类。实验结果表明,该方法在识别精度和效率方面都优于其他方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信