Mining condensed spatial co-location patterns

C. Silvestri, Francesco Cagnin, Francesco Lettich, S. Orlando, M. Wachowicz
{"title":"Mining condensed spatial co-location patterns","authors":"C. Silvestri, Francesco Cagnin, Francesco Lettich, S. Orlando, M. Wachowicz","doi":"10.1145/2834126.2834135","DOIUrl":null,"url":null,"abstract":"The discovery of co-location patterns among spatial events is an important task in spatial data mining. We introduce a new kind of spatial co-location patterns, named condensed spatial co-location patterns, that can be considered as a lossy compressed representation of all the co-location patterns. Each condensed pattern is the representative, and a superset, of a group of spatial co-location patterns in the full set of patterns such that the difference between the interestingness measure of the representative and the measures of the patterns belonging to the associated group are negligible. Our preliminary experiments show that condensed spatial co-location patterns are less sensitive to parameter changes and more robust in presence of missing data than closed spatial co-location patterns.","PeriodicalId":194029,"journal":{"name":"Proceedings of the Fourth ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems","volume":"322 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2834126.2834135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The discovery of co-location patterns among spatial events is an important task in spatial data mining. We introduce a new kind of spatial co-location patterns, named condensed spatial co-location patterns, that can be considered as a lossy compressed representation of all the co-location patterns. Each condensed pattern is the representative, and a superset, of a group of spatial co-location patterns in the full set of patterns such that the difference between the interestingness measure of the representative and the measures of the patterns belonging to the associated group are negligible. Our preliminary experiments show that condensed spatial co-location patterns are less sensitive to parameter changes and more robust in presence of missing data than closed spatial co-location patterns.
挖掘压缩空间共位模式
空间事件间共定位模式的发现是空间数据挖掘中的一个重要任务。我们引入了一种新的空间同位模式,称为压缩空间同位模式,它可以被认为是所有同位模式的有损压缩表示。每个浓缩模式都是模式集合中一组空间共位模式的代表和超集,因此代表的有趣度度量与属于相关组的模式度量之间的差异可以忽略不计。我们的初步实验表明,与封闭的空间共定位模式相比,浓缩的空间共定位模式对参数变化的敏感性较低,在数据缺失的情况下更具鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信