Modeling Traffic Flows with Fluid Flow Model

Paulus Setiawan Suryadjaja, Maclaurin Hutagalung, Herman Yoseph Sutarto
{"title":"Modeling Traffic Flows with Fluid Flow Model","authors":"Paulus Setiawan Suryadjaja, Maclaurin Hutagalung, Herman Yoseph Sutarto","doi":"10.34010/injiiscom.v1i1.4860","DOIUrl":null,"url":null,"abstract":"This Research presents a macroscopic model of traffic flow as the basis for making Intelligent Transportation System (ITS). The data used for modeling is The number of passing vehicles per three minutes. The traffic flow model created in The form of Fluid Flow Model (FFM). The parameters in The model are obtained by mixture Gaussian distribution approach. The distribution consists of two Gaussian distributions, each representing the mode of traffic flow. In The distribution, intermode shifting process is illustrated by the first-order Markov chain process. The parameters values are estimated using The Expectation-maximization (EM) algorithm. After The required parameter values are obtained, traffic flow is estimated using the Observation and transition-basedmost likely estimates Tracking Particle Filter (OTPF). To Examine the accuracy of the model has been made, the model estimation results are compared with the actual traffic flow data. Traffic flow data is collected on Monday 20 September 2017 at 06.00 to 10.00 on DipatiukurRoad, Bandung. The proposed model has accuracy with MAPE value below 10%, or falls into highly accurate categories","PeriodicalId":196635,"journal":{"name":"International Journal of Informatics, Information System and Computer Engineering (INJIISCOM)","volume":"334 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Informatics, Information System and Computer Engineering (INJIISCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34010/injiiscom.v1i1.4860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This Research presents a macroscopic model of traffic flow as the basis for making Intelligent Transportation System (ITS). The data used for modeling is The number of passing vehicles per three minutes. The traffic flow model created in The form of Fluid Flow Model (FFM). The parameters in The model are obtained by mixture Gaussian distribution approach. The distribution consists of two Gaussian distributions, each representing the mode of traffic flow. In The distribution, intermode shifting process is illustrated by the first-order Markov chain process. The parameters values are estimated using The Expectation-maximization (EM) algorithm. After The required parameter values are obtained, traffic flow is estimated using the Observation and transition-basedmost likely estimates Tracking Particle Filter (OTPF). To Examine the accuracy of the model has been made, the model estimation results are compared with the actual traffic flow data. Traffic flow data is collected on Monday 20 September 2017 at 06.00 to 10.00 on DipatiukurRoad, Bandung. The proposed model has accuracy with MAPE value below 10%, or falls into highly accurate categories
用流体流模型建模交通流
本研究提出了交通流的宏观模型,作为构建智能交通系统(ITS)的基础。用于建模的数据是每三分钟通过车辆的数量。以流体流动模型(FFM)的形式建立交通流模型。模型参数采用混合高斯分布法求解。该分布由两个高斯分布组成,每个高斯分布代表交通流的模式。在分布中,模间变换过程用一阶马尔可夫链过程表示。使用期望最大化(EM)算法估计参数值。在获得所需的参数值后,使用基于观察和过渡的最可能估计跟踪粒子滤波器(OTPF)估计交通流量。为了检验模型的准确性,将模型估计结果与实际交通流数据进行了比较。交通流量数据于2017年9月20日星期一上午6点至10点在万隆DipatiukurRoad收集。该模型的MAPE值在10%以下,或者属于高精度类别
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信