NCG-LS: Named Entity Recognition Model Specializing for Analyzing Product Titles

Shiqi Sun, Kun Zhang, Jingyuan Li, Jianhe Cen, Yuanzhuo Wang
{"title":"NCG-LS: Named Entity Recognition Model Specializing for Analyzing Product Titles","authors":"Shiqi Sun, Kun Zhang, Jingyuan Li, Jianhe Cen, Yuanzhuo Wang","doi":"10.1109/WI-IAT55865.2022.00092","DOIUrl":null,"url":null,"abstract":"Entity recognition of product titles is essential for retrieving and recommending product information, where product title text has the characteristics of high entity density and fine type granularity. Most of the current studies focus on only one of the two features instead of considering the two challenges together. Our approach, named NCG-LS, proposes NEZHA-CNN-GlobalPointer architecture with the addition of label semantic networks, and uses multi-granularity contextual and label semantic information to fully capture the internal structure and category information of words and texts to improve the entity recognition accuracy. Through a series of experiments, we proved the efficiency of NCG-LS over a dataset of Chinese product titles from JD, improving the F1 value by 5.98%, when compared to the BERT-LSTM-CRF model on the product title corpus.","PeriodicalId":345445,"journal":{"name":"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)","volume":"235 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT55865.2022.00092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Entity recognition of product titles is essential for retrieving and recommending product information, where product title text has the characteristics of high entity density and fine type granularity. Most of the current studies focus on only one of the two features instead of considering the two challenges together. Our approach, named NCG-LS, proposes NEZHA-CNN-GlobalPointer architecture with the addition of label semantic networks, and uses multi-granularity contextual and label semantic information to fully capture the internal structure and category information of words and texts to improve the entity recognition accuracy. Through a series of experiments, we proved the efficiency of NCG-LS over a dataset of Chinese product titles from JD, improving the F1 value by 5.98%, when compared to the BERT-LSTM-CRF model on the product title corpus.
NCG-LS:专门用于分析产品名称的命名实体识别模型
产品标题的实体识别是产品信息检索和推荐的关键,其中产品标题文本具有实体密度高、类型粒度细的特点。目前的大多数研究只关注这两个特征中的一个,而不是同时考虑这两个挑战。我们的方法ngg - ls提出了nezhan - cnn - globalpointer架构,并增加了标签语义网络,利用多粒度上下文和标签语义信息全面捕获词和文本的内部结构和类别信息,提高实体识别的准确性。通过一系列的实验,我们证明了NCG-LS在JD中文产品标题数据集上的效率,与BERT-LSTM-CRF模型在产品标题语料库上的F1值相比,提高了5.98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信