Revisiting heavy-hitters: don't count packets, compute flow inter-packet metrics in the data plane

S. Singh, Christian Esteve Rothenberg, M. C. Luizelli, G. Antichi, Gergely Pongrácz
{"title":"Revisiting heavy-hitters: don't count packets, compute flow inter-packet metrics in the data plane","authors":"S. Singh, Christian Esteve Rothenberg, M. C. Luizelli, G. Antichi, Gergely Pongrácz","doi":"10.1145/3405837.3411388","DOIUrl":null,"url":null,"abstract":"Detecting Heavy Hitter (HH) flows, i.e., flows exceeding a pre-determined threshold in a time window, is a fundamental task as it enables network management and security applications like DoS attack detection/prevention, flow-size aware routing, and QoS. The recent breakthroughs of programmable data planes has provided an unique opportunity: detect them directly in the data plane to enable fast control decisions. State-of-the-art solutions leverage either probabilistic data structures [1, 2] or prefix trees [3] to store flow counters directly in the programmable pipeline of switches. However, the former approach still depends on the intervention of a central controller to identify the HH flows from the hash-buckets, thus partially diminishing the fast data plane reaction. The latter approach instead, while successfully implemented on FPGA, is not yet a feasible solution for today's programmable ASICs due to limited accesses to registers [4].","PeriodicalId":396272,"journal":{"name":"Proceedings of the SIGCOMM '20 Poster and Demo Sessions","volume":"19 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIGCOMM '20 Poster and Demo Sessions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3405837.3411388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Detecting Heavy Hitter (HH) flows, i.e., flows exceeding a pre-determined threshold in a time window, is a fundamental task as it enables network management and security applications like DoS attack detection/prevention, flow-size aware routing, and QoS. The recent breakthroughs of programmable data planes has provided an unique opportunity: detect them directly in the data plane to enable fast control decisions. State-of-the-art solutions leverage either probabilistic data structures [1, 2] or prefix trees [3] to store flow counters directly in the programmable pipeline of switches. However, the former approach still depends on the intervention of a central controller to identify the HH flows from the hash-buckets, thus partially diminishing the fast data plane reaction. The latter approach instead, while successfully implemented on FPGA, is not yet a feasible solution for today's programmable ASICs due to limited accesses to registers [4].
重访重量级数据:不计算数据包,计算数据平面中的流数据包间度量
检测重磅攻击(HH)流,即在一个时间窗口内超过预定阈值的流,是一项基本任务,因为它可以实现网络管理和安全应用,如DoS攻击检测/预防、流量大小感知路由和QoS。最近可编程数据平面的突破提供了一个独特的机会:直接在数据平面中检测它们以实现快速控制决策。最先进的解决方案利用概率数据结构[1,2]或前缀树[3]将流量计数器直接存储在交换机的可编程管道中。然而,前一种方法仍然依赖于中央控制器的干预,以识别来自哈希桶的HH流,从而部分地降低了快速数据平面反应。后一种方法虽然在FPGA上成功实现,但由于对寄存器的访问有限,对于当今的可编程asic来说还不是可行的解决方案[4]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信