Neural network model for time series prediction by reinforcement learning

Feng Liu, C. Quek, G. Ng
{"title":"Neural network model for time series prediction by reinforcement learning","authors":"Feng Liu, C. Quek, G. Ng","doi":"10.1109/IJCNN.2005.1555956","DOIUrl":null,"url":null,"abstract":"Two important issues when constructing a neural network (NN) for time series prediction: proper selection of (1) the input dimension and (2) the time delay between the inputs. These two parameters determine the structure, computing complexity and accuracy of the NN. This paper is to formulate an autonomous data-driven approach to identify a parsimonious structure for the NN so as to reduce the prediction error and enhance the modeling accuracy. The reinforcement learning based dimension and delay estimator (RLDDE) is proposed. It involves a trial-error learning process to formulate a selection policy for designating the above-mentioned two parameters. The proposed method is evaluated by the prediction of the benchmark sunspot time series.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"20 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1555956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Two important issues when constructing a neural network (NN) for time series prediction: proper selection of (1) the input dimension and (2) the time delay between the inputs. These two parameters determine the structure, computing complexity and accuracy of the NN. This paper is to formulate an autonomous data-driven approach to identify a parsimonious structure for the NN so as to reduce the prediction error and enhance the modeling accuracy. The reinforcement learning based dimension and delay estimator (RLDDE) is proposed. It involves a trial-error learning process to formulate a selection policy for designating the above-mentioned two parameters. The proposed method is evaluated by the prediction of the benchmark sunspot time series.
基于强化学习的神经网络时间序列预测模型
在构建用于时间序列预测的神经网络(NN)时,有两个重要问题:正确选择(1)输入维度和(2)输入之间的时间延迟。这两个参数决定了神经网络的结构、计算复杂度和精度。本文的目的是制定一种自主数据驱动的方法来识别神经网络的精简结构,以减少预测误差,提高建模精度。提出了一种基于强化学习的维数与延迟估计器(RLDDE)。制定指定上述两个参数的选择策略需要一个试错学习过程。通过对基准太阳黑子时间序列的预测,对该方法进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信