P. S. Ghahfarokhi, A. Kallaste, Andrejs Podgornovs, A. M. Cardoso, A. Belahcen, T. Vaimann
{"title":"AC Loss Analysis Approaches for Hairpin Winding Configuration: Analytical, Hybrid Model, and FEA","authors":"P. S. Ghahfarokhi, A. Kallaste, Andrejs Podgornovs, A. M. Cardoso, A. Belahcen, T. Vaimann","doi":"10.1109/CPE-POWERENG58103.2023.10227403","DOIUrl":null,"url":null,"abstract":"One of the effective options to achieve higher power density and lower-weight electric motors for electric vehicle (EV) applications is to replace the conventional winding with a hairpin configuration. This novel concept has several advantages, but the biggest drawback is high AC loss. Therefore, as this type of winding utilizes in EV motors for high-speed application, the correct estimations of this loss are essential during the design procedure. This paper presents three primary approaches to model and calculate the AC loss of hairpin windings: analytical, hybrid model, and FEA methods. In addition, the FEA method is used to validate and evaluate the accuracy of two other methods. Accordingly, both analytical and hybrid model results agree with FEA results. However, the hybrid model has higher accuracy rather than the analytical method.","PeriodicalId":315989,"journal":{"name":"2023 IEEE 17th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)","volume":"357 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPE-POWERENG58103.2023.10227403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
One of the effective options to achieve higher power density and lower-weight electric motors for electric vehicle (EV) applications is to replace the conventional winding with a hairpin configuration. This novel concept has several advantages, but the biggest drawback is high AC loss. Therefore, as this type of winding utilizes in EV motors for high-speed application, the correct estimations of this loss are essential during the design procedure. This paper presents three primary approaches to model and calculate the AC loss of hairpin windings: analytical, hybrid model, and FEA methods. In addition, the FEA method is used to validate and evaluate the accuracy of two other methods. Accordingly, both analytical and hybrid model results agree with FEA results. However, the hybrid model has higher accuracy rather than the analytical method.