Estimation of Dynamic Models with Nonparametric Simulated Maximum Likelihood

Dennis Kristensen, Yongseok Shin
{"title":"Estimation of Dynamic Models with Nonparametric Simulated Maximum Likelihood","authors":"Dennis Kristensen, Yongseok Shin","doi":"10.2139/ssrn.1300864","DOIUrl":null,"url":null,"abstract":"We propose an easy-to-implement simulated maximum likelihood estimator for dynamic models where no closed-form representation of the likelihood function is available. Our method can handle any simulable model without latent dynamics. Using simulated observations, we nonparametrically estimate the unknown density by kernel methods, and then construct a likelihood function that can be maximized. We prove that this nonparametric simulated maximum likelihood (NPSML) estimator is consistent and asymptotically efficient. The higher-order impact of simulations and kernel smoothing on the resulting estimator is also analyzed; in particular, it is shown that the NPSML does not suffer from the usual curse of dimensionality associated with kernel estimators. A simulation study shows good performance of the method when employed in the estimation of jump–diffusion models.","PeriodicalId":123778,"journal":{"name":"ERN: Theoretical Dynamic Models (Topic)","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Theoretical Dynamic Models (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1300864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

Abstract

We propose an easy-to-implement simulated maximum likelihood estimator for dynamic models where no closed-form representation of the likelihood function is available. Our method can handle any simulable model without latent dynamics. Using simulated observations, we nonparametrically estimate the unknown density by kernel methods, and then construct a likelihood function that can be maximized. We prove that this nonparametric simulated maximum likelihood (NPSML) estimator is consistent and asymptotically efficient. The higher-order impact of simulations and kernel smoothing on the resulting estimator is also analyzed; in particular, it is shown that the NPSML does not suffer from the usual curse of dimensionality associated with kernel estimators. A simulation study shows good performance of the method when employed in the estimation of jump–diffusion models.
非参数模拟极大似然的动态模型估计
我们提出了一个易于实现的模拟最大似然估计的动态模型,其中没有封闭形式的似然函数表示是可用的。我们的方法可以处理任何没有潜在动力学的可模拟模型。利用模拟观测值,利用核函数法对未知密度进行非参数估计,并构造可最大化的似然函数。证明了该非参数模拟极大似然(NPSML)估计量是一致且渐近有效的。分析了仿真和核平滑对估计量的高阶影响;特别是,它表明NPSML不会遭受与核估计器相关的通常的维数诅咒。仿真研究表明,该方法对跳跃扩散模型的估计具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信