Coalgebras for Bisimulation of Weighted Automata over Semirings

Purandar Bhaduri
{"title":"Coalgebras for Bisimulation of Weighted Automata over Semirings","authors":"Purandar Bhaduri","doi":"10.46298/lmcs-19(1:4)2023","DOIUrl":null,"url":null,"abstract":"Weighted automata are a generalization of nondeterministic automata that\nassociate a weight drawn from a semiring $K$ with every transition and every\nstate. Their behaviours can be formalized either as weighted language\nequivalence or weighted bisimulation. In this paper we explore the properties\nof weighted automata in the framework of coalgebras over (i) the category\n$\\mathsf{SMod}$ of semimodules over a semiring $K$ and $K$-linear maps, and\n(ii) the category $\\mathsf{Set}$ of sets and maps. We show that the behavioural\nequivalences defined by the corresponding final coalgebras in these two cases\ncharacterize weighted language equivalence and weighted bisimulation,\nrespectively. These results extend earlier work by Bonchi et al. using the\ncategory $\\mathsf{Vect}$ of vector spaces and linear maps as the underlying\nmodel for weighted automata with weights drawn from a field $K$. The key step\nin our work is generalizing the notions of linear relation and linear\nbisimulation of Boreale from vector spaces to semimodules using the concept of\nthe kernel of a $K$-linear map in the sense of universal algebra. We also\nprovide an abstract procedure for forward partition refinement for computing\nweighted language equivalence. Since for weighted automata defined over\nsemirings the problem is undecidable in general, it is guaranteed to halt only\nin special cases. We provide sufficient conditions for the termination of our\nprocedure. Although the results are similar to those of Bonchi et al., many of\nour proofs are new, especially those about the coalgebra in $\\mathsf{SMod}$\ncharacterizing weighted language equivalence.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"308 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-19(1:4)2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Weighted automata are a generalization of nondeterministic automata that associate a weight drawn from a semiring $K$ with every transition and every state. Their behaviours can be formalized either as weighted language equivalence or weighted bisimulation. In this paper we explore the properties of weighted automata in the framework of coalgebras over (i) the category $\mathsf{SMod}$ of semimodules over a semiring $K$ and $K$-linear maps, and (ii) the category $\mathsf{Set}$ of sets and maps. We show that the behavioural equivalences defined by the corresponding final coalgebras in these two cases characterize weighted language equivalence and weighted bisimulation, respectively. These results extend earlier work by Bonchi et al. using the category $\mathsf{Vect}$ of vector spaces and linear maps as the underlying model for weighted automata with weights drawn from a field $K$. The key step in our work is generalizing the notions of linear relation and linear bisimulation of Boreale from vector spaces to semimodules using the concept of the kernel of a $K$-linear map in the sense of universal algebra. We also provide an abstract procedure for forward partition refinement for computing weighted language equivalence. Since for weighted automata defined over semirings the problem is undecidable in general, it is guaranteed to halt only in special cases. We provide sufficient conditions for the termination of our procedure. Although the results are similar to those of Bonchi et al., many of our proofs are new, especially those about the coalgebra in $\mathsf{SMod}$ characterizing weighted language equivalence.
半环上加权自动机双模拟的余代数
加权自动机是一种不确定性自动机的泛化,它将从半循环$K$中提取的权重与每个转换和每个状态相关联。它们的行为可以形式化为加权语言等价或加权双模拟。本文在(i)半模的$\mathsf{SMod}$范畴和(ii)集合和映射的$\mathsf{Set}$范畴上,研究了余代数框架下加权自动机的性质。我们证明了在这两种情况下,由相应的最终余代数定义的行为等价分别具有加权语言等价和加权双模拟的特征。这些结果扩展了Bonchi等人的早期工作,使用向量空间和线性映射的类别$\mathsf{Vect}$作为加权自动机的基础模型,其权重从字段$K$中提取。我们工作的关键步骤是利用泛代数意义上的K -线性映射核的概念,将线性关系和Boreale的线性双模拟的概念从向量空间推广到半模。我们还提供了一个用于计算加权语言等价的前向划分细化的抽象过程。由于对于加权自动机定义的过载,问题通常是不可确定的,因此只能保证在特殊情况下停止。我们为终止我们的程序提供了充分的条件。虽然结果与Bonchi等人的相似,但我们的许多证明都是新的,特别是关于$\mathsf{SMod}$中表征加权语言等价的协代数的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信