Automatic segmentation of hard exudates in fundus images based on boosted soft segmentation

Guo-Liang Fang, Nan Yang, Huchuan Lu, Kaisong Li
{"title":"Automatic segmentation of hard exudates in fundus images based on boosted soft segmentation","authors":"Guo-Liang Fang, Nan Yang, Huchuan Lu, Kaisong Li","doi":"10.1109/ICICIP.2010.5564177","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an effective framework to automatically segment hard exudates (HEs) in fundus images. Our framework is based on a coarse-to-fine strategy, as we first get a coarse result allowed of some negative samples, then eliminate the negative samples step by step. In our framework, we make the most of the multi-channel information by employing a boosted soft segmentation algorithm. Additionally, we develop a multi-scale background subtraction method to obtain the coarse segmentation result. After subtracting the optical disc (OD) region from the coarse result, the HEs are extracted by a SVM classifier. The main contributions of this paper are: (1) propose an efficient and robust framework for automatic HEs segmentation; (2) present a boosted soft segmentation algorithm to combine multi-channel information; (3) employ a double ring filter to segment the OD region. We perform our experiments on the pubic DIARETDB1 dateset, which consists of 89 fundus images. The performance of our algorithm is assessed on both lesion-based criterion and image-based criterion. Our experimental results show that the proposed algorithm is very effective and robust.","PeriodicalId":152024,"journal":{"name":"2010 International Conference on Intelligent Control and Information Processing","volume":"99 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Intelligent Control and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2010.5564177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

In this paper, we propose an effective framework to automatically segment hard exudates (HEs) in fundus images. Our framework is based on a coarse-to-fine strategy, as we first get a coarse result allowed of some negative samples, then eliminate the negative samples step by step. In our framework, we make the most of the multi-channel information by employing a boosted soft segmentation algorithm. Additionally, we develop a multi-scale background subtraction method to obtain the coarse segmentation result. After subtracting the optical disc (OD) region from the coarse result, the HEs are extracted by a SVM classifier. The main contributions of this paper are: (1) propose an efficient and robust framework for automatic HEs segmentation; (2) present a boosted soft segmentation algorithm to combine multi-channel information; (3) employ a double ring filter to segment the OD region. We perform our experiments on the pubic DIARETDB1 dateset, which consists of 89 fundus images. The performance of our algorithm is assessed on both lesion-based criterion and image-based criterion. Our experimental results show that the proposed algorithm is very effective and robust.
基于增强软分割的眼底硬渗出物自动分割
本文提出了一种有效的眼底图像硬渗出物自动分割框架。我们的框架是基于一个从粗到精的策略,因为我们首先得到一个允许一些负样本的粗结果,然后逐步消除负样本。在我们的框架中,我们通过采用增强的软分割算法来充分利用多通道信息。此外,我们还开发了一种多尺度背景减法来获得粗分割结果。在粗糙结果中减去光盘(OD)区域后,使用支持向量机分类器提取HEs。本文的主要贡献有:(1)提出了一个高效、鲁棒的自动HEs分割框架;(2)提出了一种结合多通道信息的增强软分割算法;(3)采用双环滤波器对OD区域进行分割。我们在公共DIARETDB1数据集上进行实验,该数据集由89张眼底图像组成。我们的算法在基于病变和基于图像的准则下进行了性能评估。实验结果表明,该算法具有良好的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信