A new view on HJLS and PSLQ: sums and projections of lattices

Jingwei Chen, D. Stehlé, G. Villard
{"title":"A new view on HJLS and PSLQ: sums and projections of lattices","authors":"Jingwei Chen, D. Stehlé, G. Villard","doi":"10.1145/2465506.2465936","DOIUrl":null,"url":null,"abstract":"The HJLS and PSLQ algorithms are the de facto standards for discovering non-trivial integer relations between a given tuple of real numbers. In this work, we provide a new interpretation of these algorithms, in a more general and powerful algebraic setup: we view them as special cases of algorithms that compute the intersection between a lattice and a vector subspace. Further, we extract from them the first algorithm for manipulating finitely generated additive subgroups of a euclidean space, including projections of lattices and finite sums of lattices. We adapt the analyses of HJLS and PSLQ to derive correctness and convergence guarantees.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"25 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465506.2465936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The HJLS and PSLQ algorithms are the de facto standards for discovering non-trivial integer relations between a given tuple of real numbers. In this work, we provide a new interpretation of these algorithms, in a more general and powerful algebraic setup: we view them as special cases of algorithms that compute the intersection between a lattice and a vector subspace. Further, we extract from them the first algorithm for manipulating finitely generated additive subgroups of a euclidean space, including projections of lattices and finite sums of lattices. We adapt the analyses of HJLS and PSLQ to derive correctness and convergence guarantees.
关于HJLS和PSLQ的新观点:格的和与投影
HJLS和PSLQ算法是发现给定实数元组之间非平凡整数关系的事实标准。在这项工作中,我们提供了这些算法的一个新的解释,在一个更一般和强大的代数设置:我们把它们看作是计算晶格和向量子空间之间的交集的算法的特殊情况。进一步,我们从它们中提取了第一个用于处理欧几里得空间有限生成的加性子群的算法,包括格的投影和格的有限和。通过对HJLS和PSLQ的分析,得到了其正确性和收敛性的保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信