Probabilistic Integration of 2D and 3D Cues for Visual Servoing

A. Hafez, C. V. Jawahar
{"title":"Probabilistic Integration of 2D and 3D Cues for Visual Servoing","authors":"A. Hafez, C. V. Jawahar","doi":"10.1109/ICARCV.2006.345095","DOIUrl":null,"url":null,"abstract":"In this paper we present a new integration method for improving the performance of visual servoing. The method integrates image-based visual servoing (IBVS) and position-based visual servoing (PBVS) approaches to satisfy the widely varying requirements of the visual servoing process. We define an integration rule for IBVS and PBVS controllers. Density functions that determine the weighting factor of each controller are defined to satisfy the above constraints. We prove that this integration method provides global stability, and avoids local minima. The new integration method is validated on positioning tasks and compared with other switching methods","PeriodicalId":415827,"journal":{"name":"2006 9th International Conference on Control, Automation, Robotics and Vision","volume":"15 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Control, Automation, Robotics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2006.345095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper we present a new integration method for improving the performance of visual servoing. The method integrates image-based visual servoing (IBVS) and position-based visual servoing (PBVS) approaches to satisfy the widely varying requirements of the visual servoing process. We define an integration rule for IBVS and PBVS controllers. Density functions that determine the weighting factor of each controller are defined to satisfy the above constraints. We prove that this integration method provides global stability, and avoids local minima. The new integration method is validated on positioning tasks and compared with other switching methods
视觉伺服中二维和三维线索的概率集成
本文提出了一种新的集成方法来提高视觉伺服系统的性能。该方法将基于图像的视觉伺服(IBVS)和基于位置的视觉伺服(PBVS)方法相结合,以满足视觉伺服过程的广泛变化要求。我们定义了IBVS和PBVS控制器的积分规则。定义密度函数,确定每个控制器的权重因子,以满足上述约束。证明了该方法具有全局稳定性,并避免了局部极小值。通过定位任务验证了该方法的有效性,并与其他切换方法进行了比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信