{"title":"Constrained model predictive control of PEM fuel cell with guaranteed stability","authors":"S. Minagar, Reza Ghaderi, A. R. Noey","doi":"10.1109/ICCIAUTOM.2011.6356654","DOIUrl":null,"url":null,"abstract":"In this paper, a constrained model predictive controller with guaranteed stability is proposed for a PEM fuel cell. The aim is to prevent oxygen starvation by controlling the air supply system, when the control system is affected by required stack current as a measurable disturbance. The compressor voltage is controlled to regulate the oxygen excess ratio towards a desired equilibrium to avoid oxygen starvation. A dual-mode controller is utilized to guarantee input-to-state stability. In a neighborhood of the target state, the control action is generated by a local state feedback controller and outside this neighborhood model predictive control is employed. Linear Matrix Inequalities is used to obtain a terminal cost and a local state-feedback control law to satisfy MPC input-to-state stabilization conditions. A nonlinear dynamical model of PEM fuel cell is used as a simulator. Simulation results indicate that the proposed controller leads to improved stability and much less computations with respect to conventional GPC controllers.","PeriodicalId":438427,"journal":{"name":"The 2nd International Conference on Control, Instrumentation and Automation","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd International Conference on Control, Instrumentation and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2011.6356654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a constrained model predictive controller with guaranteed stability is proposed for a PEM fuel cell. The aim is to prevent oxygen starvation by controlling the air supply system, when the control system is affected by required stack current as a measurable disturbance. The compressor voltage is controlled to regulate the oxygen excess ratio towards a desired equilibrium to avoid oxygen starvation. A dual-mode controller is utilized to guarantee input-to-state stability. In a neighborhood of the target state, the control action is generated by a local state feedback controller and outside this neighborhood model predictive control is employed. Linear Matrix Inequalities is used to obtain a terminal cost and a local state-feedback control law to satisfy MPC input-to-state stabilization conditions. A nonlinear dynamical model of PEM fuel cell is used as a simulator. Simulation results indicate that the proposed controller leads to improved stability and much less computations with respect to conventional GPC controllers.