ON THE DISTRIBUTION OF M-TUPLES OF B-NUMBERS

W. Nowak
{"title":"ON THE DISTRIBUTION OF M-TUPLES OF B-NUMBERS","authors":"W. Nowak","doi":"10.2298/PIM0591071N","DOIUrl":null,"url":null,"abstract":"In the classical sense, the set B consists of all integers which can be written as a sum of two perfect squares. In other words, these are the values attained by norms of integral ideals over the Gaussian field Q(i). G. J. Rieger (1965) and T. Cochrane, R. E. Dressler (1987) established bounds for the number of pairs (n; n + h), resp., triples (n; n + 1; n + 2) of B-numbers up to a large real parameter x. The present article generalizes these investigations into two directions: The result obtained deals with arbitrary M-tuples of arithmetic progressions of positive integers excluding the trivial case that one of them is a constant multiple of one of the others. Furthermore, the estimate applies to the case of an arbitrary normal extension K of the rational field instead of Q(i).","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"100 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM0591071N","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In the classical sense, the set B consists of all integers which can be written as a sum of two perfect squares. In other words, these are the values attained by norms of integral ideals over the Gaussian field Q(i). G. J. Rieger (1965) and T. Cochrane, R. E. Dressler (1987) established bounds for the number of pairs (n; n + h), resp., triples (n; n + 1; n + 2) of B-numbers up to a large real parameter x. The present article generalizes these investigations into two directions: The result obtained deals with arbitrary M-tuples of arithmetic progressions of positive integers excluding the trivial case that one of them is a constant multiple of one of the others. Furthermore, the estimate applies to the case of an arbitrary normal extension K of the rational field instead of Q(i).
关于b数的m元组的分布
在经典意义上,集合B由所有可以写成两个完全平方和的整数组成。换句话说,这些值是由高斯场Q(i)上的积分理想的范数得到的。G. J. Rieger(1965)和T. Cochrane, R. E. Dressler(1987)建立了对数(n;N + h),代表。, triples (n;N + 1;本文将这些研究推广到两个方向:所得到的结果处理任意正整数等差数列的m元组,排除其中一个是另一个的常数倍的平凡情况。此外,该估计适用于有理域的任意正态扩展K而不是Q(i)的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信