Automatic Term and Sentence Classification Via Augmented Term and Pre-trained language model in ESG Taxonomy texts

Ke Tian, Zepeng Zhang, Hua Chen
{"title":"Automatic Term and Sentence Classification Via Augmented Term and Pre-trained language model in ESG Taxonomy texts","authors":"Ke Tian, Zepeng Zhang, Hua Chen","doi":"10.18653/v1/2022.finnlp-1.30","DOIUrl":null,"url":null,"abstract":"In this paper, we present our solutions to the FinSim4 Shared Task which is co-located with the FinNLP workshop at IJCAI-2022. This new edition of FinSim4-ESG is extended to the “Environment, Social and Governance (ESG)” related issues in the financial domain. There are two sub-tasks in the FinSim4 shared task. The goal of sub-task1 is to develop a model to predict correctly a list of given terms from ESG taxonomy domain into the most relevant concepts. The aim of subtask2 is to design a system that can automatically classify the ESG Taxonomy text sentence into sustainable or unsustainable class. We have developed different classifiers to automatically classify the terms and sentences with augmented term and pre-trained language models: tf-idf vector, word2vec, Bert, Distill-Bert, Albert, Roberta. The result dashboard shows that our proposed methods yield a significant performance improvement compared to the baseline which ranked 1st in the subtask2 and 2rd of mean rank in the subtask1.","PeriodicalId":331851,"journal":{"name":"Proceedings of the Fourth Workshop on Financial Technology and Natural Language Processing (FinNLP)","volume":"223 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth Workshop on Financial Technology and Natural Language Processing (FinNLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.finnlp-1.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present our solutions to the FinSim4 Shared Task which is co-located with the FinNLP workshop at IJCAI-2022. This new edition of FinSim4-ESG is extended to the “Environment, Social and Governance (ESG)” related issues in the financial domain. There are two sub-tasks in the FinSim4 shared task. The goal of sub-task1 is to develop a model to predict correctly a list of given terms from ESG taxonomy domain into the most relevant concepts. The aim of subtask2 is to design a system that can automatically classify the ESG Taxonomy text sentence into sustainable or unsustainable class. We have developed different classifiers to automatically classify the terms and sentences with augmented term and pre-trained language models: tf-idf vector, word2vec, Bert, Distill-Bert, Albert, Roberta. The result dashboard shows that our proposed methods yield a significant performance improvement compared to the baseline which ranked 1st in the subtask2 and 2rd of mean rank in the subtask1.
基于扩充词和预训练语言模型的ESG分类文本术语和句子自动分类
在本文中,我们提出了FinSim4共享任务的解决方案,该任务与IJCAI-2022的FinNLP研讨会位于同一位置。新版FinSim4-ESG扩展到金融领域的“环境、社会和治理(ESG)”相关问题。在FinSim4共享任务中有两个子任务。子任务1的目标是开发一个模型,以正确地预测从ESG分类领域到最相关概念的给定术语列表。subtask2的目的是设计一个系统,可以自动将ESG Taxonomy文本句子分为可持续类和不可持续类。我们开发了不同的分类器,通过增强术语和预训练的语言模型对术语和句子进行自动分类:tf-idf vector, word2vec, Bert, Distill-Bert, Albert, Roberta。结果显示,与基线相比,我们提出的方法产生了显着的性能改进,基线在subtask2中排名第一,在subtask1中排名第二。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信