DAMO-NLP at SemEval-2023 Task 2: A Unified Retrieval-augmented System for Multilingual Named Entity Recognition

Zeqi Tan, Shen Huang, Zixia Jia, Jiong Cai, Yinghui Li, Weiming Lu, Y. Zhuang, Kewei Tu, Pengjun Xie, Fei Huang, Yong Jiang
{"title":"DAMO-NLP at SemEval-2023 Task 2: A Unified Retrieval-augmented System for Multilingual Named Entity Recognition","authors":"Zeqi Tan, Shen Huang, Zixia Jia, Jiong Cai, Yinghui Li, Weiming Lu, Y. Zhuang, Kewei Tu, Pengjun Xie, Fei Huang, Yong Jiang","doi":"10.48550/arXiv.2305.03688","DOIUrl":null,"url":null,"abstract":"The MultiCoNER II shared task aims to tackle multilingual named entity recognition (NER) in fine-grained and noisy scenarios, and it inherits the semantic ambiguity and low-context setting of the MultiCoNER I task. To cope with these problems, the previous top systems in the MultiCoNER I either incorporate the knowledge bases or gazetteers. However, they still suffer from insufficient knowledge, limited context length, single retrieval strategy. In this paper, our team DAMO-NLP proposes a unified retrieval-augmented system (U-RaNER) for fine-grained multilingual NER. We perform error analysis on the previous top systems and reveal that their performance bottleneck lies in insufficient knowledge. Also, we discover that the limited context length causes the retrieval knowledge to be invisible to the model. To enhance the retrieval context, we incorporate the entity-centric Wikidata knowledge base, while utilizing the infusion approach to broaden the contextual scope of the model. Also, we explore various search strategies and refine the quality of retrieval knowledge. Our system wins 9 out of 13 tracks in the MultiCoNER II shared task. Additionally, we compared our system with ChatGPT, one of the large language models which have unlocked strong capabilities on many tasks. The results show that there is still much room for improvement for ChatGPT on the extraction task.","PeriodicalId":444285,"journal":{"name":"International Workshop on Semantic Evaluation","volume":"9 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Semantic Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.03688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The MultiCoNER II shared task aims to tackle multilingual named entity recognition (NER) in fine-grained and noisy scenarios, and it inherits the semantic ambiguity and low-context setting of the MultiCoNER I task. To cope with these problems, the previous top systems in the MultiCoNER I either incorporate the knowledge bases or gazetteers. However, they still suffer from insufficient knowledge, limited context length, single retrieval strategy. In this paper, our team DAMO-NLP proposes a unified retrieval-augmented system (U-RaNER) for fine-grained multilingual NER. We perform error analysis on the previous top systems and reveal that their performance bottleneck lies in insufficient knowledge. Also, we discover that the limited context length causes the retrieval knowledge to be invisible to the model. To enhance the retrieval context, we incorporate the entity-centric Wikidata knowledge base, while utilizing the infusion approach to broaden the contextual scope of the model. Also, we explore various search strategies and refine the quality of retrieval knowledge. Our system wins 9 out of 13 tracks in the MultiCoNER II shared task. Additionally, we compared our system with ChatGPT, one of the large language models which have unlocked strong capabilities on many tasks. The results show that there is still much room for improvement for ChatGPT on the extraction task.
面向多语言命名实体识别的统一检索增强系统
MultiCoNER II共享任务旨在解决细粒度和噪声场景下的多语言命名实体识别(NER)问题,它继承了MultiCoNER I任务的语义模糊性和低上下文设置。为了解决这些问题,MultiCoNER I中以前的顶级系统要么包含知识库,要么包含地名词典。但仍存在知识不足、上下文长度有限、检索策略单一等问题。在本文中,我们的团队DAMO-NLP提出了一个用于细粒度多语言NER的统一检索增强系统(U-RaNER)。对以往的顶级系统进行误差分析,发现它们的性能瓶颈在于知识不足。此外,我们发现有限的上下文长度导致检索知识对模型不可见。为了增强检索上下文,我们结合了以实体为中心的Wikidata知识库,同时利用注入方法来扩大模型的上下文范围。此外,我们还探索了各种检索策略,并改进了检索知识的质量。我们的系统在MultiCoNER II共享任务中赢得了13个曲目中的9个。此外,我们将我们的系统与ChatGPT进行了比较,ChatGPT是大型语言模型之一,在许多任务上都具有强大的功能。结果表明,ChatGPT在提取任务上还有很大的改进空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信