Automated Metadata Generation and its Application to Biological Association Extraction

S. Mukhopadhyay, Niranjan Jayadevaprakash
{"title":"Automated Metadata Generation and its Application to Biological Association Extraction","authors":"S. Mukhopadhyay, Niranjan Jayadevaprakash","doi":"10.1109/WAINA.2008.138","DOIUrl":null,"url":null,"abstract":"Text mining methods are used in this paper to extract associations among biological objects. Transitive association methods using metadata (MeSH terms) have the potential to discover implicit associations without relying on explicit co-occurrence of objects of interest. To avoid costly manual metadata assignment and deal with missing metadata, automated metadata generation methods are described in the paper. The association knowledge extracted using automatically generated metadata is found to be as good as that that using manually assigned metadata, in terms of precision.","PeriodicalId":170418,"journal":{"name":"22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008)","volume":"12 S1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Advanced Information Networking and Applications - Workshops (aina workshops 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAINA.2008.138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Text mining methods are used in this paper to extract associations among biological objects. Transitive association methods using metadata (MeSH terms) have the potential to discover implicit associations without relying on explicit co-occurrence of objects of interest. To avoid costly manual metadata assignment and deal with missing metadata, automated metadata generation methods are described in the paper. The association knowledge extracted using automatically generated metadata is found to be as good as that that using manually assigned metadata, in terms of precision.
元数据自动生成及其在生物关联提取中的应用
本文使用文本挖掘方法来提取生物对象之间的关联。使用元数据(MeSH术语)的传递关联方法有可能发现隐式关联,而不依赖于感兴趣对象的显式共现。为了避免昂贵的人工元数据分配和处理元数据缺失,本文描述了元数据自动生成方法。在精度方面,使用自动生成的元数据提取的关联知识与使用手动分配的元数据提取的关联知识一样好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信