{"title":"Storyboard relational model for group activity recognition","authors":"Boning Li, Xiangbo Shu, Rui Yan","doi":"10.1145/3444685.3446255","DOIUrl":null,"url":null,"abstract":"This work concerns how to effectively recognize the group activity performed by multiple persons collectively. As known, Storyboards (i.e., medium shot, close shot) jointly describe the whole storyline of a movie in a compact way. Likewise, the actors in small subgroups (similar to Storyboards) of a group activity scene contribute a lot to such group activity and develop more compact relationships among them within subgroups. Inspired by this, we propose a Storyboard Relational Model (SRM) to address the problem of Group Activity Recognition by splitting and reintegrating the group activity based on the small yet compact Storyboards. SRM mainly consists of a Pose-Guided Pruning (PGP) module and a Dual Graph Convolutional Networks (Dual-GCN) module. Specifically, PGP is designed to refine a series of Storyboards from the group activity scene by leveraging the attention ranges of individuals. Dual-GCN models the compact relationships among actors in a Storyboard. Experimental results on two widely-used datasets illustrate the effectiveness of the proposed SRM compared with the state-of-the-art methods.","PeriodicalId":119278,"journal":{"name":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3444685.3446255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This work concerns how to effectively recognize the group activity performed by multiple persons collectively. As known, Storyboards (i.e., medium shot, close shot) jointly describe the whole storyline of a movie in a compact way. Likewise, the actors in small subgroups (similar to Storyboards) of a group activity scene contribute a lot to such group activity and develop more compact relationships among them within subgroups. Inspired by this, we propose a Storyboard Relational Model (SRM) to address the problem of Group Activity Recognition by splitting and reintegrating the group activity based on the small yet compact Storyboards. SRM mainly consists of a Pose-Guided Pruning (PGP) module and a Dual Graph Convolutional Networks (Dual-GCN) module. Specifically, PGP is designed to refine a series of Storyboards from the group activity scene by leveraging the attention ranges of individuals. Dual-GCN models the compact relationships among actors in a Storyboard. Experimental results on two widely-used datasets illustrate the effectiveness of the proposed SRM compared with the state-of-the-art methods.